Коэффициент трения щебня по грунту
Коэффициент уплотнения песка, щебня, грунта и ПГС — таблица и правила расчета
Сыпучие строительные материалы, а также грунты при различных физических воздействиях могут разрыхляться или уплотняться. При этом плотность их колеблется в достаточно большом интервале — до нескольких десятков процентов. В строительстве часто применяются 2 относительные величины — коэффициент уплотнения при транспортировке Кут и коэффициент уплотнения грунта (основания) Ку. По сути они отражают одно и то же явление — изменение объема вследствие уменьшения пористости, но рассчитываются и применяются по-разному.
Характеристики плотности строительных материалов
Если в карьере горные породы находятся в плотном монолитном состоянии, то при добыче они разрыхляются, становятся более пористыми. Сырье проходит множество манипуляций — выемку, промывку, просеивание с распределением на фракции, хранение. При отгрузке материалы опять рыхлятся, а при перевозке трамбуются. На завершающей стадии они укладываются в конструкцию и еще раз уплотняются. На протяжении всего процесса изменяется влажность, что неизбежно отражается на плотности.
Сыпучие материалы — щебень, песок, песчано-гравийная смесь ПГС и т.д. — состоят из отдельных зерен, между которыми есть пустоты. При разработке, погрузке и выгрузке твердый скелет разрыхляется, объем пор и пустот увеличивается.
Рыхлонасыпанное состояние материала характеризуется насыпной плотностью, то есть соотношением массы и объема, ей занимаемого:
Измеряется она путем взвешивания стандартного мерного сосуда объемом 5-50 дм³ без предварительного уплотнения. Размер тары выбирается исходя из наибольшей крупности частиц. В процессе испытаний сразу можно найти пустотность как отношение объема пустот ко всему объему материала. Она определяется в %. Так, насыпная плотность песка составляет 1600 кг/м³, щебня 1310-1400 кг/м³, ПГС — 1340-1500 кг/м³ (в зависимости от размера фракций). В рыхлом состоянии между частицами сохраняется некоторый объем воздуха. Пустотность песка, щебня и ПГС соответственно 30-45%, 20-50% и 30-50%.
Если убрать все поры из материала, то получится сплошной монолит. Его плотность называется истинной. Она намного больше насыпной: у песка это 2500-3000 кг/м³, щебня — 2700-3100 кг/м³, ПГС 2500-3100 кг/м³. Это величина неизменная, она необходима для вычисления пористости материала.
Истинная плотность определяется опытным путем. Сырье измельчается в порошок, затем находится его масса и объем (по объему вытесненной из сосуда воды). По формуле ρ=m/V рассчитывается удельный вес материала без пор и пустот.
Для чего используется коэффициент уплотнения
Эта безразмерная величина позволяет определить, насколько фактическая плотность отличается от насыпной или максимальной:
- при перевозке коэффициент согласовывается между заказчиком и поставщиком, отгружающим сырье из карьера, со склада или завода;
- при устройстве основания под какое-либо сооружение Ку задается проектом как отношение к максимальной плотности грунта.
Это 2 разных сценария, соответственно, расчет ведется совершенно по-разному.
Коэффициент уплотнения транспортировки Кут
При перевозке за счет вибрации более мелкие частицы перемещаются вниз, заполняют пустоты между крупными зернами. Соответственно, объем груза уменьшается, а плотность увеличивается.
Приемка нерудных материалов, как правило, производится по объему или массе. Чтобы избежать неприятных сюрпризов при получении груза, нужно учитывать неизбежную усадку при транспортировке.
Если материалы принимаются по объему, проводится обмер поставки, то есть размер наполненной части ж/д вагона или автомобиля. Затем полученное значение умножается на коэффициент Кут.
Поведение материала во время транспортировки и складской переработки зависит от гранулометрического состава, влажности, способности слеживаться при хранении, абразивности частиц, а также вида транспорта и климатической зоны. Согласно ГОСТ 9757-90 коэффициент уплотнения песка и других нерудных материалов должен быть согласован с изготовителем, но принимается не более 1,15, т.е. потеря объема не должна быть выше 15%. Кут всегда больше единицы, поскольку рассчитывается как отношение первоначального объема материала к его к объему после перевозки.
Если приемка проводилась по массе, весовые единицы пересчитываются в насыпной объем делением на насыпную плотность по формуле:
Поставщиком отгружено 6 м³ песка в кузов грузового автомобиля. После доставки объем естественно уменьшился. При измерении установлено, что он равен 4,8 м³. Требуется определить, была ли недопоставка.
Умножаем 4,8 на Кут=1,15. Получаем V=4,8х1,15=5,52 м³. Налицо недогруз 0,8 м³.
Если приемка ведется по массе, после взвешивания автомобиль с песком масса материала объемом 6 м³ (при стандартной насыпной плотности 1600 кг/м³) должна составлять m=6х1600=9600 кг.
Нормативными считаются технологические потери при перевозке железнодорожным, автомобильным или водным транспортом без перегрузок, по массе не более:
- щебня, гравия, шлака — 1,15-1,24% ;
- песка, ПГС, отсева, керамзита — 1,2-1,34%.
С перегрузками из одного транспорта в другой для всех материалов норма потерь — 1,50-1,54%. Если не хватает больше, поставщик допустил недогруз, что является уже поводом для предъявления претензии заказчиком.
Как рассчитать потребность в материалах с учетом коэффициента уплотнения
Для любых строительных работ необходимо как можно точнее определить расход материалов. Например, проводится устройство щебеночной подготовки толщиной 20 см на площади 100 кв.м.
Находим объем подушки:
С учетом при укладке коэффициента уплотнения щебня 0,98 и при транспортировке 1,15 находим необходимый объем материала, который должен отпустить поставщик из карьера:
Учитывая стандартный объем кузова КамАЗа 6 м³ нам нужно заказать 4 машины.
Коэффициент уплотнения грунта
При устройстве оснований и фундаментов важной характеристикой является плотность грунта. Она определяет его несущую способность, поведение под нагрузкой, склонность к просадкам.
Плотность грунта зависит от минералогического состава, пористости и влажности. Самые плотные сложены из гранитных, базальтовых или кремниевых пород. Их удельный вес свыше 3000 кг/м³. Наименьшая плотность у торфяников и насыпных грунтов — не более 700-900 кг/м³.
Коэффициент уплотнения — это безразмерная величина, равная отношению фактической плотности грунта к его максимальной плотности:
Физический смысл Ку легко понять, если представить сначала монолитную глыбу, а затем ее в уже в измельченном, но уплотненном виде. Соотношение плотностей одного и того же вещества, но в разном состоянии, и есть коэффициент уплотнения. В отличие от Кут, который всегда больше единицы, Ку не может быть больше 1, поскольку в числителе стоит фактическая плотность материала с порами, а в знаменателе — без воздушных пустот.
Максимальная плотность грунта: способ определения по ГОСТ 22733-2016
Испытания проводятся в лабораторных условиях с помощью специальной трамбующей установки. Суть их состоит в следующем:
- На строительной площадке отбирается грунт естественной влажности. В образце должно быть не более 25% твердых частиц крупнее 2 мм, отсутствовать промерзание и переувлажнение.
- В форму помещаются порции грунта, которые затем трамбуются на установке за 3 приема по 40 ударов.
- Измеряется вес 1 л утрамбованной массы, определяется плотность.
- Затем влажность увеличивается ступенями по 2%, проводится аналогичный цикл испытаний.
- По результатам строится график зависимости плотности от влажности. В точке перегиба фиксируется максимальное значение ρmax при оптимальной влажности.
Определение наибольшей плотности грунта позволяет понять, при каком значении ρ усадка под фундаментом будет наименьшей. В условиях стройплощадки максимальное значение плотности достигнуть вряд ли удастся. Поэтому вводится коэффициент, который помогает установить, насколько фактическая плотность основания приближена к максимально возможной.
Ку задается проектом. Он рассчитывается в зависимости от нагрузки и обычно составляет 0,96-0,98. Это означает, что при уплотнении грунта или песчаной подушки плотность будет чуть меньше максимальной с небольшим отклонением 2-4%.
Определение Ку в лабораториях или полевых условиях
Имея на руках проект с заданным коэффициентом уплотнения ПГС, песка или грунта, необходимо установить, соответствует ли фактическая плотность основания нужному значению. Для этого используются различные методики.
С помощью отбора проб
Этот способ наиболее точный, но не очень скоростной. Требуется участие лаборатории, поскольку на стройплощадках сложно организовать благоприятные условия для измерений.
Для опытов используются режущие кольца известного объема. Без нарушения структуры материала производится отбор проб и дальнейшее их взвешивание.
Отобранный в нескольких точках участка грунт упаковывается в герметичную тару и отправляется на исследование. После получения результатов взвешивания определяется зависимость плотности грунта от влажности и рассчитывается фактический коэффициент уплотнения в каждой точке отбора. После оценки степени подготовки грунта выносится решение о продолжении или прекращении работ по трамбовке грунта.
Динамическим плотномером (пенетромером)
Измерения применяются в качестве экспресс-метода, позволяющего оценить степень уплотнения основания в полевых условиях. Динамический плотномер представляет собой заостренный стальной стержень с ручкой и ударной площадкой. На нем подвижно закреплен груз определенной массы.
Плотномер устанавливается вертикально на основание. Затем груз поднимается и сбрасывается на ударную площадку. При этом стержень постепенно погружается в грунт. Количество ударов подсчитывается.
После того как наконечник полностью опустится ниже поверхности, по специальной таблице определяется коэффициент уплотнения. Если он меньше требуемого проектом, производится дополнительная трамбовка. Если Ку соответствует нужному значению, основание готово к дальнейшим работам.
Для уплотнения используются виброплиты, ручные и автоматические трамбовки. Чем ближе коэффициент Ку к единице, тем меньше в грунте пустот, соответственно выше плотность.
Электромагнитный метод
При таком способе плотность грунта на стройплощадке сравнивается с ранее установленной в лабораторных условиях. Измерения проводятся специальным прибором, инициирующий электрическое поле. Он передает электромагнитный импульс, который проходит через грунт и фиксируется датчиком, а по изменению значения определяется плотность.
Для испытаний на участке выбирается не менее 5 точек, расположенных по принципу клеверного листа. Большую погрешность дают влажность, крупные твердые включения, неоднородность почвы. Измерения проводятся относительно долго по сравнению с другими вариантами, где результат можно получить за один сеанс.
Метод штампа
При этом способе определяется динамический модуль упругости грунта, который находится в прямой зависимости от его плотности. Прибор состоит из нагрузочной плиты, тензодатчика усилий, штанги с грузом и упругим элементом, акселерометра и электронного блока.
При сбрасывании груза на площадку он, благодаря силе упругости, возвращается в исходное положение. Параметры взаимодействия считываются и обрабатываются электронным блоком. По результатам испытаний определяется модуль упругости, деформации и нагрузка. Информация представляется в графическом или численном виде на дисплее. Плотномер может архивировать и отправлять данные в ПК, что создает предпосылки для более детальной обработки и планирования строительства.
Прямой метод замещения объема
Согласно стандарту ГОСТ 28514-90 плотность грунта может измеряться с помощью пескозагрузочного аппарата или цилиндра с резиновым баллоном. Перед испытаниями в лабораторных условиях определяется плотность песка, в опытах она будет образцом для сравнения.
Для проведения испытаний на уплотненном основании выбирается лунка диаметром 100 мм. В нее из установленного сверху пескобака засыпается песок. Объем загрузки вычисляется по шкале на баке. Далее измеряется вес вынутого грунта. При известных параметрах среды (в данном случае песка) плотность грунта рассчитывается по формуле:
ρ=m*ρ0/m0, где ρ0 и m0 — плотность и масса песка, наполняющего лунку.
В методике с резиновым баллоном в качестве среды используется вода, которая заливается внутрь аппарата. Баллон помещается в вырытую лунку, заполняется водой. По количеству потраченной воды определяется объем грунта. Далее, измерив вес пробы, можно найти искомую плотность и коэффициент уплотнения.
Этот метод можно использовать, если количество твердых крупных частиц превышает 25%. Это щебеночные и гравийные основания, а также подушки из смесей ЩПС или ПГС.
Способы увеличения плотности грунта
Характеристики грунта зависят от его состава и влажности. Если его плотность очень низкая, налицо склонность к деформациям и просадкам. Это сильносжимаемые торф, ил, сапропели, пластичные глины и т.д. В большинстве случаев они не используются в качестве оснований для строительства. Требуется повышение их прочностных свойств, которое решается различными методами:
- инъектированием закрепляющих растворов;
- термической обработкой (обжигом);
- электрохимическим способом;
- армированием;
- установкой шпунтовых ограждений;
- фильтрующей пригрузкой;
- механическими методами.
При недостаточной поверхностной плотности грунта проводится уплотнение верхнего слоя трамбовками, катками, площадочными вибраторами. Глубинное уплотнение производится с помощью устройства свай, вибрации, замачивания, направленных взрывов. При большой влажности сначала понижается уровень грунтовых вод, затем проводится предварительное обжатие.
Заключение
Коэффициент уплотнения — важный показатель, который позволяет охарактеризовать состояние материалов после различных манипуляций. При транспортировке он помогает прогнозировать уменьшение объема, а при трамбовке — изменение плотности. Показатель зависит от гранулометрического состава, пористости частиц, влажности и интенсивности механического воздействия.
Контекстная справка
Трение между грунтом и задней поверхностью конструкции
Значение соответственно активного или пассивного давления грунта зависит не только от выбранной теории решения, но и от трения между грунтом и задней поверхностью конструкции, а также когезии грунта к стене строительной конструкции, представленной углом δ . При угле δ = 0 давление грунта σ действует перпендикулярно на заднюю поверхность стены, и равнодействующая давления грунта P также перпендикулярна отмносительно задней поверхности конструкции.(см. Рис.):
Распределение давления грунта вдоль конструкции для δ = 0
Если в анализе давления грунта учитывается трение между грунтом и задней поверхностью стены, давление грунта σ и его равнодействующая P наклонены от задней поверхности стены на угол δ . Координаты углов трения δ от прямого угла к задней поверхности стены необходимо вводить в соответствии с взаимным движением конструкции и грунта. При увеличении значения δ значение активного давления грунта уменьшается, т.е. равнодействующая сила активного давления грунта отклоняется от нормального направления (см.Рис.):
Распределение давления грунта вдоль конструкции для δ ≠ 0
Значение угла δ обычно находится в пределах от δ ≤ 1/3φ до δ = 2/3φ . Ориентировочные значения угла трения между конструкцией и грунтом указаны в таблице значений δ для разных границ и в таблице рекомендованных значений |δ|/φ . Значение δ≤ 1/3φ можно использовать в случае гладкой отделки задней поверхности ограждающей конструкции (фольга и покрытия для защиты от грунтовой воды). Для неотделанной поверхности не следует превышать значение δ = 2/3φ . Определяя величину угла δ, следует учитывать и остальные условия, в частности, условие равновесия в вертикальном направлении. Необходимо определить способность конструкции передавать вертикальную пригрузку от трения грунта на ее заднюю поверхность, не вызывая при этом значительную вертикальную деформацию. В обратном случае следует уменьшить значение δ , т..к. может произойти лишь частичное воздействие трения на заднюю поверхность стены. В случае неуверенности более безпопасно принимать более низкое значение δ .
Как нужно учитывать отрицательную силу трения, действующую на сваю? Грунт насыпной.
Если у Вас всё-таки Свая -стойка.
Дать ссилку на пункт СП, СНип, или ДБН где чёрным по белому написано - что силы трения грунта на боковой поверхности СВАй-СТОЕК в расчетах их несущей способности по грунту основания на сжимающую нагрузку не учитываются.
А если какойто грунт дает отрицательную силу трения по боковой поверхности, тогда да нужно учитывать, повторюсь только для висячих свай. Ведь насыпной Вы проходите, или нет.
Последний раз редактировалось w7ra, 18.12.2013 в 12:05 . А ты пиши в экспертизу - расчет свай выполнен с учетом отрицательной силы трения по СП 24.13330.2011, п.7.2.11А для сваи стойки, как пишут - отрицательная сила трения - ослу мертвые уши. Последний раз редактировалось forass, 18.12.2013 в 12:05 . расчет свай выполнен с учетом отрицательной силы трения по СП 24.13330.2011, п.7.2.11 Так в этом пункте пишут:" . следует учитывать в случаях: планировки территории подсыпкой толщиной более 1,0 м", а о том, какие это сваи (стойки, висячие - ни звука). Украина, Львов Добавьте к нагрузке на сваю от сооружения силу негативного трения, которая догружает сваю-стойку (если такая сила появляется). Проходит свая по материалу на такую нагрузку? Так и ответите эксперту. __________________
Ставки сделаны, господа.
К сваям-стойкам относятся сваи всех видов и сваи-оболочки, которые пepeдaют нагрузку на грунт только нижним концом.
И учёт отрицательных или положительных сил трения по боковой поверхности у них не производится.
Пускай Вам експерт даст номер пункта НД каторым он пользуется, относительно учета нег. трения по боковой поверхности сваи- стойки. полный абсурд
1 мин. -----
ну пипец свая-стойка ведь. "Експерта" на мыло
Например, при пригрузке территории возле свай-стоек, грунт вокруг ствола как бы "повисает" на свае. Когда возникают силы отрицательного трения - когда осадка сваи (значительно) меньше осадки околосвайного грунта.
Смотрите "Руководство по проектированию свайных фунд.", п.5.14, там это разъясняется детально.
__________________Ставки сделаны, господа. Последний раз редактировалось playgamer, 18.12.2013 в 12:35 . Если голова сваи ниже насыпного слоя, то как можно учитывать негативное трение по боковой поверхности от осадок грунта, если сама боковая поверхность не в насыпном грунте?
Да уж, негативным силам по барабану - висячая свая или стойка.
Еще выше - насыпной грунт - 4м.Какой? Когда отсыпан? Происходит ли уплотнениие этого слоя в настоящее время или на время строительства? Или будет отсыпаться после погружения свай?
Угол внутреннего трения грунта
Угол внутреннего трения (ϕ) – это отношение вертикального или нормального напряжения к горизонтальному (касательному). Их совместное действие провоцирует смещение частиц грунта относительно друг друга. На показатель влияет сила трения. Его определяют при испытаниях связных и несвязных дисперсных грунтов на устойчивость к сдвигу.
Содержание [Спрятать]- Угол внутреннего трения грунта
- От чего зависит и на что влияет угол внутреннего трения
- Как определить угол внутреннего трения
- Лабораторные испытания
- Методы полевых испытаний
- Оборудование
- Подготовка к испытаниям
- Обработка результатов
- Практическое применение показателя
От чего зависит и на что влияет угол внутреннего трения
Для понимания сути этого параметра нужно представить себе откос, на который действует гравитация. Чем больше крутизна стенок , тем сильнее напряжение, которое возникает из-за силы тяжести. В какой-то момент сцепление между частицами разрушается, и они смещаются.
Наклон стенки по отношению к основанию, при котором она остается стабильной, называют углом естественного откоса. У дисперсных несвязных грунтов он совпадает с углом внутреннего трения. Зерна в них скрепляются только за счет трения между собой. В связных и скальных грунтах устойчивость к сдвигу обеспечивается еще и сцеплением, которое обеспечивается более прочными связями – коллоидными, цементационными и кристаллическими. Детальнее о них вы можете прочитать в статье Прочность грунта.
В таблице даны значения углов естественного откоса для разных типов грунтов.
Угол естественного откоса в природном сложении, утрамбованном и разрыхленном состоянии отличается. В следующей таблице мы разместили значения показателя для некоторых грунтов и пород после их разрыхления.
При испытаниях на сопротивляемость сдвигу на грунт воздействуют две силы – одна направлена сверху вниз (нормальная, или вертикальная нагрузка), другая горизонтально (касательная). Угол внутреннего трения напрямую зависит от вертикального давления. По вектору своего действия она похожа на гравитацию – сила направлена сверху вниз.
Как видно из приведенных выше описаний , показатель находится в прямой зависимости от силы трения.
На нее, в свою очередь, влияют:
- Текстура поверхности
Зерна с гладкой поверхностью легче смещаются относительно друг друга. - Форма
Контакты между частицами неправильной формы более прочные, чем между круглыми. - Гранулометрический состав
В мелкозернистых грунтах больше суммарная площадь поверхности элементов. Это значит, что количество контактов между ними тоже больше. - Пористость
В материале с большим количеством пор частицы находятся на большем расстоянии и слабее контактируют между собой. В результате они легче сдвигаются.
Прочность на сдвиг во многом зависит от угла внутреннего трения. Чем большее вертикальное давление может выдержать массив без деформации, перемещения частиц и потери целостности, тем выше его несущая способность.
Дальше мы рассмотрим, как определяется показатель.
Как определить угол внутреннего трения
Испытания грунта на определение исключительно угла внутреннего трения не проводят. Показатель вычисляют опытным путем, во время которого определяется прочность грунтов на сдвиг. Испытания проводятся в лабораторных или полевых условиях.
Лабораторные испытания
Они включают:
- Одноплоскостной срез
- Трехосное сжатие
Каждый из них также в свою очередь делится на несколько методов.
Одноплоскостной срез может быть:
- Быстрым неконсолидированным – для водонасыщенных просадочных, глинистых и плодородных грунтов с текучестью менее 0,5
- Медленным консолидировано-дренированным – для всех остальных грунтов без учета влаги в порах
Трехосное сжатие включает в себя методы:
- Неконсолидировано-недренированный – для материалов с природным сложением, без отведения влаги в дренаж
- Консолидировано-недренированный – с насыщенным влагой и р азуплотненным грунтом
- Консолидировано-дренированный – грунт сначала насыщают влагой и разуплотняют, затем отводят воду через дренаж и повторно уплотняют
Детальнее об этих методиках вы можете прочитать в статье Прочность грунта на сдвиг.
При использовании метода одноплоскостного среза сначала вычисляют вертикальное (σ) и касательное (τ) напряжение по формулам:
Испытания проводятся минимум 3 раза. Полученные цифры отмечают на графике.
Угол внутреннего трения зависит от τ и σ. Он выражается уравнением:
При наличии более прочных связей в грунтах добавляют еще показатель сцепления (с).
Уравнение выглядит так:
Чтобы точно вычислить угол внутреннего трения, обрабатывают экспериментальные данные τ, отмеченные точками на графике.
Затем проводят расчеты по формуле:
Методы полевых испытаний
Для определения показателя непосредственно в массиве используется метод среза целиков грунта – небольших образцов, только частично отделенных от массива. Грунт испытывают в строительных котлованах, карьерах, шахтах. Его срезают в заданной фиксированной плоскости , одновременно сжимая сверху вниз. Описание методики можно найти в ГОСТ 20276-2012.
Испытывать можно грунты со следующими параметрами:
- Естественным сложением и влажностью
- Насыпные и намывные с любой влажностью
- Крупнообломочные, с нарушенным сложением, определенными параметрами влажности и плотности
Чтобы найти угол внутреннего трения, опыт повторяют трижды. Срезают грунт в одном месте и на одинаковой глубине.
Оборудование
В исследовании используются такие приборы:
- Кольцо, диаметр которого по внутреннему ободку 200 мм, а высота составляет его половину
- Штампы жесткие, которые свободно помещаются в кольце, но плотно прилегают к его стенкам
- Приспособления для создания давления на грунт
- Срезающий механизм с анкером; он обеспечивает касательную нагрузку в строго определенной плоскости, с разрешенными колебаниями не более 30 мм
- Прибор, измеряющий деформации и давление
Испытания проводятся со ступенчатой или непрерывной нагрузкой.
Подготовка к испытаниям
С помощью кольца из массива вырезают образец грунта.
Порядок работы:
- Стенки кольца изнутри покрывают жиром.
- Грунт разравнивают и ставят на него кольцо , при этом внимательно следят, чтобы оно не перекосилось.
- На кольцо надавливают руками или домкратом, чтобы оно вошло в массив. Грунт вокруг обрезают и удаляют.
- Когда над ободком появится грунт, его выравнивают. Сверху насыпают слой песка с низкой влажностью, толщиной 1-2 см для глинистого и 3 см для крупнообломочного грунта. Это необходимо для лучшего выравнивания поверхности и контакта со штампом, чтобы нагрузка равномерно распределялась на весь объем грунта.
- Под кольцом, между его краем и массивом, оставляют зазор 1-2 см (но не менее половины от наибольшего диаметра зерен и включений грунта). В этом месте будет проходить срез. Крупнообломочные грунты отделяют от массива на 1-2 см ниже кольца, закрывают его и переносят образец к испытательному механизму.
- Когда все готово, штамп припасовывают к кольцу и готовят срезной механизм.
- Далее измерительный прибор, которым будут фиксировать смещение грунта и уменьшение его высоты, приводят в готовность.
Для проведения опыта выбирают один из трех методов:
- Медленный консолидированно-дренированный
- Быстрый неконсолидированный
- Метод «плашек» на специально подготовленной поверхности
Детальнее о них читайте в продолжении текста.
Медленный консолидировано-дренированный срез
Образец уплотняют штампом. Нужно создать давление (р), при котором грунт будут срезать для определения его сопротивления (τ). Давление увеличивают ступенями, их показатели мы разместили в таблице.
Стабильное давление на каждой ступени выдерживают:
- Пески и грунты из крупных обломков – 5 мин
- Глинистые грунты – 30 мин
- Органические почвы – 60 мин
Последняя ступень выдерживается до момента, когда частицы перестают смещаться, а объем пробы остается одинаковым (наступает стабилизация деформаций). Этот момент наступает приблизительно за одинаковое время у однотипных грунтов.
В таблице показаны цифры давления, при котором происходит стабилизация деформаций при сжатии и срезе.
Когда образец уплотняют, фиксируют его сжатие (изменение высоты, деформацию):
- У крупнообломочных грунтов данные отмечают в начале и конце промежуточных ступеней. На последней порядок фиксации следующий: первые 30 мин – записывают изменения каждые 10 мин, вторые 30 мин – каждые 15 мин. Дальше фиксацию проводят каждые полчаса , пока высота пробы не перестанет изменяться.
- При испытании глинистых грунтов на промежуточных ступенях изменения высоты отмечают каждые 10 мин. Порядок фиксации деформаций на последней ступени: первый час – каждые 15 мин, второй час – каждые 30 мин, после этого ежечасно до момента стабилизации высоты.
Когда грунт уплотнен и зазор установлен, переходят к следующему этапу – плавному или ступенчатому срезанию.
При ступенчатом срезе нагрузка по касательной на каждой ступени не должна превосходить вертикальное давление больше, чем на 10%. Деформации замеряют каждые 2 минуты, пока они не стабилизируются.
Стабилизацией считают момент, когда за определенный отрезок времени кольцо перемещается не более, чем на 1 мм. Значения времени для разных типов грунтов даны в таблице выше.
Опыт заканчивается, если после очередного увеличения нагрузки грунтовые пласты резко смещаются по отношению друг к другу (срываются) либо если образец деформирован больше, чем на 10%.
Если грунт срезают непрерывно, деформации также фиксируются каждые 2 минуты. Скорость среза для некоторых разновидностей грунтов подана в таблице.
Непрерывное срезание заканчивают тогда , когда скорость повышается до максимума и начинает снижаться либо возникает деформация, превосходящая 10%.
После окончания опыта с применением любого из описанных способов отбирают часть грунта, чтобы определить влажность.
Неконсолидированный быстрый срез
Быстрым неконсолидированным срезом проводят испытания глинистых грунтов. Вертикальное давление передается в одну ступень. В таблице поданы его значения. Именно при таком давлении будет проводиться срез.
Если грунт под давлением выдавливается из кольца, опыт повторяют со сниженной нагрузкой. В этом случае она может не соответствовать приведенным в таблице данным.
Когда давление достигает нужных цифр, грунт срезают. Сделать это нужно не позднее, чем через 5 минут после начала подачи нагрузки.
При ступенчатом способе среза давление по горизонтали не должно превышать нагрузку по вертикали больше, чем на 10%. Перерывы между ступенями делают в 10-30 с. При непрерывном методе грунт срезают со скоростью 5-20 мм/мин.
Метод «плашек»
Метод применяется на глинистых грунтах, если к объекту предъявляются особые требования. Опыт проводят после завершения испытаний образцов с природной влажностью и естественным сложением. Перед его началом поверхность подготавливают.
Порядок проведения работ:
- Все механизмы (кроме анкера), которые остались в земле после предыдущего опыта, извлекают.
- Кольцо с его содержимым переворачивают вверх той поверхностью, на которой срезался грунт.
- Выемку зачищают и р азравнивают. Участок округляют, его диаметр должен на 20-30 см превосходить диаметр кольца.
- Кольцо опять переворачивают и ставят его на выравненный участок.
- Кольцо поднимают на 5-10 мм, чтобы между его нижним ободком и массивом получился зазор.
- Монтируют оборудование.
- Грунт срезают до тех пор, пока его сопротивление сдвигу не достигнет стабильных цифр.
После завершения среза часть оборудования убирают, давление домкрата снижают до ноля. Фиксируют изменение высоты грунтовой пробы. Данные горизонтальных сдвигов берут из предыдущих опытов.
Гидродомкратом, закрепленным на стенке, грунт передвигают на место, которое он занимал до срезания. В этот момент приборы зафиксируют нулевую отметку. Домкрат убирают и проводят опыт методом медленного сдвига.
Обработка результатов
Вычисление результатов после завершения испытаний любым из описанных методов будет одинаковым.
На основании трех проведенных опытов строят график. На оси абсцисс отмечают вертикальное или нормальное напряжение, на оси ординат – касательное. Точки соединяют линией. Затем перпендикулярно оси ординат проводят условную линию. Угол между этой прямой и графиком и будет углом внутреннего трения.
На практике часто польз у ются готовыми значениями угла внутреннего трения для разных грунтов. Они фиксируются при стандартных нагрузках – 1 кг/м2.
Данные угла внутреннего трения разных типов грунтов вы можете найти в таблицах. Они соответствуют требованиям СП 22.13330.2016.
Угол внутреннего трения для песков
Угол внутреннего трения для глинистых грунтов
Практическое применение показателя
Угол внутреннего трения и еще один показатель – сцепление – используются для расчета сопротивления грунтов сдвигу.
Сопротивление сдвигу, или прочность на сдвиг важно знать в таких ситуациях:
- При постройке зданий
- При строительстве автомобильных и железных дорог
- При возведении дамб и плотин
- При разработке закрытых шахт и открытых карьеров
- Для прогноза риска оползней в горной местности
- Для укрепления крутых склонов и берегов рек
Детальнее об этом вы можете узнать в статье Прочность грунта на сдвиг.
Угол внутреннего трения – это один из параметром , определяющий устойчивость грунтов к сдвигу. Вычисляют его после лабораторных или полевых испытаний. На практике часто пользуются готовыми показателями. Для проведения исследований необходима профессиональная техника и опыт. Услугу оказывают геодезические компании. Заказать ее стоит перед началом любого строительства, ведь от качества грунтового основания зависит прочность и долговечность всего здания или дороги.
Механические свойства грунтов
Механические свойства грунтов проявляются при воздействии на грунт разных типов нагрузок. Эти характеристики показывают, насколько прочным является материал, склонен ли он к деформациям. Свойства зависят в первую очередь от типа связи между отдельными частицами грунта , химического состава. Влияют на них и некоторые физические характеристики – влажность, пористость, степень выветривания.
Содержание [Спрятать]- Механические свойства грунтов
- Сжимаемость
- Просадочность
- Набухание
- Морозное пучение
- Прочность
- Упругость, или модуль упругости
- Угол внутреннего трения
- Сцепление
- Сопротивление грунтов сдвигу
- Угол естественного откоса
- Граница текучести и раската
- Липкость
К механическим свойствам относятся:
- Сжимаемость
- Просадочность
- Набухание
- Морозное пучение
- Прочность
- Упругость, или модуль упругости
- Угол внутреннего трения
- Сцепление
- Сопротивление сдвигу
- Угол естественного откоса
- Граница текучести и раската
- Липкость
Подробнее о каждом из них мы расскажем ниже
Сжимаемость
Под воздействием внешней нагрузки грунт сжимается. Это происходит за счет вытеснения из пор и капилляров воды и газов. Твердые частицы смещаются и деформируются, из-за этого материал уменьшается в объеме. Сжимаемость зависит от гранулометрического состава, пористости, влажности , прочности грунта. У грунтов с рыхлой структурой, с незначительным содержанием влаги этот показатель всегда больше, чем у плотных и водонасыщенных.
Определяют сжимаемость, чтобы рассчитать усадку под давлением фундамента, дорожного полотна, транспорта и т.д. Испытания проводят в лаборатории с помощью одометра. В прибор помещают образец грунта, а затем уплотняют его. Результаты фиксируют в виде компрессионной кривой; она показывает, насколько изменилась пористость материала, по сравнению с исходным состоянием.
Подробнее об этом читайте в статье Сжимаемость грунта.
Просадочность
Способность грунта сжиматься при замачивании под собственным весом или минимальной внешней нагрузкой и возможности бокового расширения. Свойство характерно для грунтов с высоким содержанием пылевидных частиц (лессов и лессовидных суглинков). Оно ярко проявляется при увлажнении грунта. На просадочных грунтах трудно возводить фундаменты, они требуют уплотнения или укрепления.
Измеряется просадочность все так же – с помощью одометра. В зависимости от результатов принимают решение о необходимости укрепления материала. Если проигнорировать это свойство, в дальнейшем грунт может просесть, что приведет к разрушению построек, деформации дорожного полотна и другим неприятным последствиям.
Подробнее об этом читайте в статье Просадочность грунта.
Набухание
Свойство глинистого грунта увеличиваться в объеме при увлажнении. Это происходит за счет связывания молекул воды глинистыми частицами. Вокруг них образуется пленка , расстояние между отдельными зернами грунта увеличивается. В итоге материал теряет плотность и прочность, становится пластичным.
Все грунты разделяются на несколько групп – от ненабухающих до сильнонабухающих. На последних, например, нельзя строить здания. Они требуют замены на более устойчивый к увлажнению материал.
Подробнее об этом читайте в статье Набухание грунта.
Морозное пучение
Увеличение объема при замерзании. Свойство выражено в пористых грунтах с высокой влагоемкостью. Они содержат много воды, которая после замерзания увеличивается в объеме. Морозное пучение более характерно глинам и суглинкам, чем пескам и супесям. Последние не задерживают воду, а пропускают ее в нижние горизонты грунтового массива.
Набухание и морозное пучение – негативные явления, которые ведут к разрушению построек. Увеличивающийся в объеме грунт оказывает давление на конструкцию, равное нескольким десяткам тонн. В результате фундамент может выдавливаться из земли и разрушаться, на асфальтовом полотне появляются бугры и трещины.
Подробнее об этом читайте в статье Морозное пучение грунта.
Прочность
Способность грунта сопротивляться внешним воздействиям (сжатию, разрыву, скалыванию, сдвигу). Она зависит от силы воздействия, вида и состава грунта, взаимодействия между отдельными частицами, температуры, влажности. Материалы с низкой прочностью не используются в ответственных работах. На них нельзя строить здания , их невозможно применить для приготовления бетона и других строительных смесей.
Высокой прочностью обладают скальные грунты, состоящие из пород магматического или метаморфического происхождения, сухие пластичные глины. Обретают прочность грунты, которые длительное время находились в воде (галька, речной и морской песок). Вода вымывает слабые породы из этих материалов. Показатель падает в процессе выветривания, при появлении трещин и расколов. Например, гравий, образовавшийся в результате разрушения плотных горных пород, имеет настолько низкую прочность, что некоторые зерна можно спокойно раскрошить голыми руками.
Подробнее об этом читайте в статье Прочность грунта.
Упругость, или модуль упругости
Соотношение между вертикальным давлением и степенью деформации грунта. Для определения показателя образец сначала сжимают, а потом снимают давление. Характеристика важна для расчета предполагаемой усадки фундамента.
Подробнее об этом читайте в статье Упругость грунта.
Угол внутреннего трения
Характеризует сопротивление грунта вертикальному срезу. Он зависит от силы воздействия и трения между отдельными частицами. У разных грунтов показатель колеблется от 1 5° до 43°. Показывает устойчивость материалов к сдвигу и динамическим нагрузкам.
Подробнее об этом читайте в статье Угол внутреннего трения грунта.
Сцепление
Под сцеплением понимают степень взаимодействия частиц грунта между собой. Определяется при вертикальном срезе и напрямую зависит от силы давления, которое прилагается в ходе исследования. На сцепление влияет тип связи между отдельными частицами. Оно высокое у скальных грунтов (кристаллические связи), глины (коллоидные связи). Также на него влияет степень трения, сцепление выше между зернами с шероховатой поверхностью.
Сцепление уменьшается в грунтах с большим содержанием мелких частиц, которые обволакивают более крупные, делая их поверхность гладкой. Плохо сцепляются между собой окатанные зерна речного и морского песка, гальки.
Подробнее об этом читайте в статье Сцепление грунта.
Сопротивление грунтов сдвигу
Сопротивление грунтов сдвигу – это способность выдерживать горизонтальные нагрузки без нарушения структуры. Она зависит от прочности молекулярных связей и трения частиц между собой. Показатель всегда выше у скальных, связных дисперсных и мерзлых грунтов.
В практическом смысле сопротивление сдвигу важно учитывать при возведении фундаментов зданий. Если грунт потеряет устойчивость , то постройка может разрушиться под воздействием сдвига. Чтобы избежать этого, грунт испытывают в лаборатории в приборе одноплоскостного среза.
Подробнее об этом читайте в статье Сопротивление грунта сдвигу.
Угол естественного откоса
Это угол между горизонтальной площадкой и конусом, который образовался при свободной засыпке грунта. Зависит от угла внутреннего трения и сцепления. Показатель важен для расчета высоты насыпей, откосов, глубины выемок.
Подробнее об этом читайте в статье Угол естественного откоса грунта.
Граница текучести и раската
Показатель влажности при потере пластичности, определяется для глинистых грунтов. Граница текучести – это влажность при переходе грунта из пластичного состояния в текучее. Граница раската – это минимальная влажность, при которой грунт сохраняет пластические свойства (раскатывается и сохраняет свою форму).
Подробнее об этом читайте в статье Граница текучести и раската грунта.
Липкость
Способность влажного грунта прилипать к поверхности. Свойство характерно для глины, суглинка, частично для почвы с высоким содержанием гумуса. Зависит от пластичности и текучести. Липкий грунт цепляется к инструментам и технике, шинам автомобилей, гусеницам тракторов. Поэтому его не рекомендуют использовать для грунтовых и временных дорог.
Подробнее об этом читайте в статье Липкость грунта.
Определение механических свойств грунта – важный этап подготовки ст р оительства зданий или дорог. От качества его проведения зависит сам проект и особенности его реализации. Детальнее об этих характеристиках вы можете прочитать в соответствующих статьях нашего сайта.
Коэффициент уплотнения щебня
Значение коэффициента уплотнения щебня бывает разным при транспортировке и во время проведения строительных работ. Материал во время перевозки ут р амбовывается под влиянием тряски, вибрации мотора. Согласно ГОСТу, коэффициент в этой ситуации не должен превышать 1,1. Он не зависит от вида породы и фракции.
Но на него могут повлиять другие факторы:
- Высота засыпки на транспортное средство
- Вид транспорта
- Расстояние, на которое осуществляется перевозка
- Качество дороги (для автомобилей)
Показатель при транспортировке позволяет рассчитать усадку материала, происходящую в процессе его доставки. Ведь загружается всегда один объем, а в конечную точку попадает н е много другой. Если знать коэффициент уплотнения для щебня, можно избежать как обмана нечестных производителей, так и претензий заказчиков.
Чтобы убедиться в том, что на объект привезли то количество товара, которое указано в документах, необходимо перемножить две цифры:
- Конечный объем материала, который привезли
- Коэффи ц иент уплотнения
Результат должен совпадать с тем объемом, который прописан в документах. Если число меньше заявленного, значит, тут имеет место не утряска щебня, а недобросовестный продавец.
Когда щебень используется для засыпки котлованов, фундаментов, обустройства под у шек под дорожным полотном, он дополнительно утрамбовывается. Коэффициент уплотнения в процессе проведения работ, по сравнению с показателем при транспортировке, увеличивается. Он будет зависеть от размеров зерен, типа материнской породы, метода уплотнения (ручного или с помощью вибромашин).
В таблице приведены показатели для щебня разной прочности:
Материалы с низкой прочностью уплотняются сильнее, так как в процессе трамбовки часть зерен разрушае т ся. Также хорошо уплотняются кубовидные частицы. А вот при наличии большого количества игловидных и лещадных зерен коэффициент снижается. У мелких фракций показатель не рассчитывают, так как они чаще используются для расклинцовки.
Подробнее о том, что такое коэффициент у плотнения, читайте в разделе Коэффициент уплотнения.
Читайте также: