Коэффициент теплоотдачи от кирпича к воздуху
Расчет теплоотдачи трубы
Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее.
. программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!
Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.
Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.
Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:
Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.
Расчет в Excel теплоотдачи трубы.
Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.
В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.
Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.
Теория, алгоритмы, литература.
Трубы, в системах теплоснабжения, могут выполнять две функции — транспортировать теплоноситель к месту его использования и служить сами отопительным прибором (регистром).
При реализации любой из вышеперечисленных функций необходимо производить количественную оценку эффективности её выполнения.
Основные показатели для систем транспорта тепловой энергии определены нормативными документами СО 153-34.20.523-2003 в 4 частях.
В любом случае возникает необходимость оперативного и точного расчёта:
- параметров теплообмена между трубой и окружающей её средой;
- затрат энергии на транспортирование теплоносителя (воды) через трубу.
Теплоотдача «голой» трубы
Параметры, знание которых позволяет рассчитывать тепловые процессы в системе «вода — труба — воздух», собраны и показаны в блоке исходных данных таблицы из предыдущей части статьи.
На рисунке ниже приведена эквивалентная схема теплоотдачи голой трубы.
При расчётах теплоотдачи трубы удобно использовать метод аналогии между теплотехникой и электротехникой, принимая:
По аналогии с законом Ома получаем следующее уравнение:
q=dt/Rt=(tвода— tвозд)/(Rвн+Rтр+Rнар), Вт.
Термическое сопротивление между двумя средами – водой и воздухом – препятствует всем формам теплообмена между ними:
- конвективному;
- контактному;
- излучением.
Каждая из перечисленных форм теплообмена имеет свою специфику и описывается соответствующими аналитическими выражениями.
1. Конвективный теплообмен между движущейся водой и твёрдой цилиндрической стенкой
Rвн=1/(αвн·Fвн) – термическое внутреннее сопротивление, °С/Вт, где:
- αвн – средний по длине трубы коэффициент теплоотдачи от движущейся воды внутренней поверхности трубы, Вт/(м²·°С);
- Fвн — площадь смачиваемой внутренней стенки трубы, м².
αвн=Nuвода·λвода/Dтр – коэффициент теплоотдачи на внутренней поверхности трубы, Вт/(м²·°С), где:
Число Нуссельта (Nuвода) для движущейся воды в цилиндрической трубе, равно:
Nuвода=С·Reвода m ·Prвода n ·K — число Нуссельта для движущейся воды в цилиндрической трубе, где:
2. Термическое сопротивление твёрдой стенки цилиндрической трубы
Rтр=Ln(Dнар/Dтр)/(λтр·2·π·Lтр) — термическое сопротивление стенки трубы, °С/Вт, где:
3. Конвективный и лучистый теплообмены между твёрдой цилиндрической стенкой трубы и окружающим воздухом
Rнар=1/[(αк+αл)·Fнар] – термическое наружное сопротивление, °С/Вт, где:
- αк – средний по длине трубы коэффициент конвективной теплоотдачи, Вт/(м²·°С);
- αл – средний по длине трубы коэффициент лучистой теплоотдачи, Вт/(м²·°С);
- Fнар — площадь омываемой воздухом наружной стенки трубы, м².
αк=Nuвозд·λвозд/Dнар — коэффициент теплоотдачи за счёт конвекции, Вт/(м²·°С), где:
Nuвозд=С·(Grвозд·Prвозд) n ·K — число Нуссельта для воздуха, омывающего цилиндрическую горизонтальную трубу, где:
- Grвозд – критерий Грасгофа для воздуха;
- Prвозд – критерий Прандтля для воздуха;
- С,m и n – индексы, значения которых зависит от характера потока воздуха, омывающего трубу.
Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,47; n=0,26; К=1.
Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,2; n=0,33; К=1.
Grвозд=g·β·ρвозд²·dtнар·Dнар³/μвозд² — число Грасгофа для воздуха, омывающего горизонтальную трубу, где:
- g– ускорение свободного падения, м/с²;
- β– температурный коэффициент объёмного расширения для воздуха, 1/К;
- ρвозд – объёмная плотность воздуха, кг/м³;
- dtнар – разность температур между наружной стенкой трубы и воздухом, °С;
- μвозд — динамическая вязкость воздуха, Н·с/м² (Па·с).
qл=eизл·С0·[(T0+tвозд+dtнар) 4 -(T0+tвозд) 4 ] — удельный тепловой поток за счёт излучения, Вт/м², где:
- eизл – излучательная способность (степень черноты) поверхности трубы;
- С0– постоянная Стефана-Больцмана, С0=5,67·10 -8 Вт/(м²·К 4 ).
αл=qл/dtнар — коэффициент теплоотдачи за счёт излучения, Вт/(м²·К).
4. Перепад температур между наружной стенкой трубы и воздухом
Значение разности температур между наружной стенкой трубы и воздухом (dtнар) находится с помощью метода итераций при использовании следующих равенств:
Rнар=φ(dtнар) -> dtнар=Rнар·q -> Rнар=φ(dtнар) n раз, или до момента Δ(dtнар) ≈ 0.
5. Итоговые обобщения алгоритма
При движении воды по трубе изменяются физические параметры воды и, следовательно, меняются режимы теплообмена. Для «длинных» труб погрешности расчёта могут быть очень большими, даже при использовании усреднённых значений физических параметров (Р, t) воды.
Одним из вариантов повышения точности расчётов является разбиение трубы на участки небольших размеров, физические параметры воды на которых изменяются в «приемлемых границах». При этом параметры воды на выходе предыдущего участка являются входными параметрами воды последующего участка.
Рассмотренный выше алгоритм расчета разработан для горизонтально расположенных труб.
Аналогичный алгоритм расчёта и аналитические зависимости используются и при расчёте теплоотдачи вертикальной трубы. Незначительные отличия в формулах и новые значения индексов представлены далее.
Nuвозд=С·(Grвозд·Prвозд) n — критерий Нуссельта для воздуха, омывающего цилиндрическую вертикальную трубу, где:
Grвозд=g·β·ρвозд²·dtнар·Lтр³/μвозд² — критерий Грасгофа для воздуха, омывающего вертикальную трубу.
Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,59; n=0,25.
Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,021; n=0,4.
6. Пользовательские функции
Для автоматизации рутинных расчетов были разработаны перечисленные ниже пользовательские функции (ПФ), предназначенные для вычисления параметров теплообмена между «голой» трубой и внешней воздушной средой:
- ПФ для расчёта теплоотдачи горизонтальной «голой» трубы с водой в воздушном пространстве:
РтрГГ=qТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.
- ПФ для вычисления тепловой мощности вертикальной «голой» трубы, заполненной движущейся водой и окруженной воздушной средой:
РтрВГ=qТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.
- ПФ для расчёта разности между температурами воды на входе и выходе горизонтальной «голой» трубы при теплообмене с воздушной средой:
dtтрГГ=dtТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.
- ПФ для вычисления изменения температуры воды на участке от входа до выхода из вертикальной «голой» трубы, находящейся в воздушном пространстве:
dtтрВГ=dtТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.
Теплоотдача изолированной трубы
На следующем рисунке приведена эквивалентная схема к расчету теплоотдачи изолированной трубы.
Расчётный алгоритм для теплоизолированной трубы отличается от алгоритма для «голой» трубы учётом дополнительного термического сопротивления теплоизоляции.
Rиз=Ln(Dиз/Dнар)/(λиз·2·π·Lтр) – термическое сопротивление изоляции, °С/Вт, где:
q=dt/Rt=(tвода— tвозд)/(Rвн+Rтр+Rиз+Rнар) — тепловой поток от воды через стенку трубы, слой изоляции к окружающему водуху, Вт.
Остальные формулы — те же, что и в расчетах «голой» трубы.
Для упрощения расчётов теплоотдачи изолированных труб были разработаны похожие на предыдущие четыре пользовательские функции:
- ПФ для расчёта теплоотдачи изолированной горизонтальной трубы:
РтрГИ=qТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.
- ПФ для вычисления тепловой мощности изолированной вертикальной трубы:
РтрВИ=qТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.
- ПФ для определения падения температуры воды в теплоизолированной горизонтальной трубе:
dtтрГИ=dtТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.
- ПФ для расчёта разности между температурами воды на входе и выходе теплоизолированной вертикальной трубы:
dtтрВИ=dtТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.
Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб
В рассмотренном ниже примере расчёты теплоотдачи выполнены с использованием пользовательских функций для «голой» и теплоизолированной труб со степенью черноты наружных поверхностей в диапазоне e=0,1…1,0.
Графики наглядно демонстрируют, что коэффициент излучения наружной поверхности теплоизоляции не значительно влияет на относительную мощность теплового потока. В то же время степень черноты внешней стенки «голой» трубы оказывает весьма существенное влияние на теплоотдачу! Это означает, что для «голых» труб необходимо более точно в расчётах задавать значение коэффициента излучения их наружных поверхностей. Для теплоизолированных труб точность задания степени черноты поверхности изоляции менее критична.
Коэффициенты излучения поверхностей различных материалов существенно отличаются и часто значительно зависят от температуры.
Коэффициенты морозостойкости, теплоемкости и теплопроводности кирпича
Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:
- Силикатный – рядовой, лицевой, пустотелый, полнотелый.
- Керамический – жаростойкий и все разновидности предыдущего вида.
- Клинкерный – для облицовки фасадов.
Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.
Коэффициент теплопроводности
Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.
Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:
Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.
Теплопроводность красного изделия ниже, чем у силикатного.
Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:
- Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
- Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.
Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:
- Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
- Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:
- Применение теплоизоляции.
- Нанесение штукатурки.
- Использование пустотного кирпича или камня (исключено для фундамента здания).
- Кладочный раствор с оптимальными теплотехническими параметрами.
Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:
Обыкновенный г линяный кирпич на различном кладочном растворе
Пустотный красный различной плотности (кг/м³) на ЦПС
Морозостойкость кирпичной кладки
Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.
Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.
Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.
Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:
- Применение паро- и гидроизоляции.
- Обработка кладки гидрофобными составами.
- Контроль, своевременное исправление дефектов.
- Надежная гидроизоляция фундамента.
От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.
Коэффициент теплоотдачи от кирпича к воздуху
СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА
Часть II, раздел А
Строительная теплотехника. Нормы проектирования
Дата введения 1972-04-01
Внесены Научно-исследовательским институтом строительной физики Госстроя СССР
Утверждены Государственным комитетом Совета министров СССР по делам строительства 27 октября 1971 года
Глава СНиП II-А.7-71 "Строительная теплотехника. Нормы проектирования" разработана Научно-исследовательским институтом строительной физики Госстроя СССР при участии институтов ЦНИИПромзданий Госстроя СССР, ЦНИИЭПЖилища Госгражданстроя, НИИ Мосстрой Главмосстроя Мосгорисполкома, МИСИ им. Куйбышева Министерства высшего и среднего специального образования СССР, ЦНИИЭПСельстрой Минсельстроя СССР, Гипронисельпром, Гипронисельхоз Минсельхоза СССР с учетом материалов Промстройпроекта Госстроя СССР и других научно-исследовательских и проектных институтов.
С введением в действие главы СНиП II-А.7-71 утрачивают силу с 1 апреля 1972 г. главы СНиП II-A.7-62 "Строительная теплотехника. Нормы проектирования" и II-В.6-62 "Ограждающие конструкции. Нормы проектирования".
Редакционная коллегия - инж. А.М.Кошкин (Госстрой СССР), кандидаты техн. наук С.И.Пермяков (НИИ строительной физики Госстроя СССР), И.С.Шаповалов (ЦНИИЭПЖилища Госгражданстроя), д-р техн. наук К.Ф.Фокин (НИИ Мосстроя Мосгорисполкома), инж. П.С.Суханов (ЦНИИПромзданий Госстроя СССР), д-р экон. наук Л.Д.Богуславский (МИСИ им. Куйбышева).
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Настоящая глава содержит теплотехнические нормы и требования, которые распространяются на проектирование ограждающих конструкций (наружных и внутренних стен, перекрытий, покрытий, перегородок, полов, заполнений проемов: окон, фонарей, дверей, ворот) вновь строящихся и реконструируемых зданий и сооружений различного назначения.
Примечания: 1. При проектировании зданий и сооружений следует также соблюдать требования, предъявляемые к ограждающим конструкциям соответствующими главами СНиП и нормативными документами, утвержденными или согласованными с Госстроем СССР, в части необходимой прочности, жесткости, устойчивости, долговечности, биостойкости, коррозионной стойкости и других показателей.
2. Принятые в настоящей главе условные обозначения теплотехнических величин и их размерности приведены в приложении 1.
1.2. Настоящие теплотехнические нормы и требования распространяются на все ограждающие конструкции и стыки сборных элементов, на расположенные по периметру проемов участки конструкций, углы стен, теплопроводные включения, в том числе в местах примыкания к наружным стенам балконов, транспортных галерей, цокольных, междуэтажных и чердачных перекрытий и покрытий и т.д.
1.3. Замкнутые воздушные прослойки, устраиваемые в толще наружных стен зданий и сооружений, должны иметь высоту не более высоты этажа и не более 5 м.
В наружных стенах зданий и сооружений с мокрым и влажным режимом помещений допускается устройство воздушных прослоек только в случаях вентиляции этих прослоек наружным (при необходимости подогреваемым) воздухом; высота воздушных прослоек в этом случае не ограничивается.
Высота воздушных прослоек в окнах с переплетами определяется требованиями ГОСТов на изготовление переплетов.
1.4. Влажностный режим помещений зданий и сооружений в зависимости от относительной влажности внутреннего воздуха следует считать:
нормальным при 5060%;
влажным при 6175%;
1.5. При проектировании наружных стен необходимо предусматривать меры по защите их от увлажнения:
а) атмосферной влагой (косыми дождями), в первую очередь проникающей через стыки конструкций;
б) влагой, конденсирующейся на внутренней поверхности стен и в их толще;
в) влагой производственных и хозяйственно-бытовых процессов;
г) грунтовой влагой;
д) конденсатом, образующимся на поверхностях заполнений световых проемов или светопрозрачных ограждений.
Меры по ограничению возможного увлажнения, указанного в подпунктах "б", "в", "г", "д", следует предусматривать также и при проектировании внутренних стен и перегородок.
1.6. Беспустотные полы на грунте, устраиваемые в отапливаемых помещениях (с нормируемым перепадом между температурами внутреннего воздуха и поверхности пола), следует утеплять в зонах примыкания пола к наружным стенам. Утепление, устраиваемое непосредственно по грунту, следует предусматривать из неорганических влагостойких материалов.
1.7. Для защиты от увлажнения теплоизоляционного слоя в покрытиях следует предусматривать пароизоляцию (ниже теплоизоляционного слоя) или вентилируемые наружным воздухом прослойки и каналы.
Примечания: 1. В вентилируемых покрытиях зданий и сооружений необходимая высота воздушной прослойки или диаметр каналов должны определяться в соответствии с указаниями Пособия по теплотехническому расчету ограждающих конструкций, но независимо от расчета они должны приниматься не менее 5 см, а расстояние между осями каналов 15-25 см.
2. Устройство невентилируемых воздушных прослоек в покрытиях над отапливаемыми помещениями с влажным и мокрым режимом не допускается.
3. В покрытиях не следует предусматривать пароизоляцию в тех случаях, когда влажность теплоизоляционного материала превышает по условиям эксплуатации влажность, указанную в табл.1 приложения 2, а предусматривать другие мероприятия.
1.8. Для зданий и сооружений, указанных в п.3.1 настоящей главы, возводимых в районах со среднемесячной температурой наружного воздуха за июль 20 °С и выше, следует при необходимости предусматривать меры по солнцезащите, например вентилируемые наружным воздухом воздушные прослойки и каналы в наружных стенах и покрытиях, защитные экраны, козырьки и жалюзи, охлаждаемые водой покрытия и др.
Рекомендуется предусматривать покрытие рулонных кровель мелким гравием светлых тонов толщиной не менее 10 мм.
2. СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ
2.1. Сопротивление теплопередаче ограждающих конструкций в м·ч·°С/ккал должно быть не менее сопротивления теплопередаче , требуемого из санитарно-гигиенических условий, и , определяемого экономическим расчетом в соответствии с указаниями раздела 6 настоящей главы.
Примечание. Для индустриальных элементов ограждающих конструкций, изготовляемых по действующим каталогам, а также для сплошных каменных стен из штучных материалов (кирпича, камней и т.п.) допускается принимать на 5% меньше .
2.2. Требуемое сопротивление теплопередаче ограждающих конструкций следует определять по формуле (1) с учетом требований п.1.2 настоящей главы:
м·ч·°С/ккал, (1)
где - коэффициент, зависящий от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху, принимаемый по табл.1;
- расчетная температура внутреннего воздуха в °С, принимаемая по нормам проектирования зданий и сооружений соответствующего назначения;
- расчетная зимняя температура наружного воздуха в °С, принимаемая согласно указаниям п.2.4 настоящей главы;
- нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции в °С, принимаемый по табл.2;
- коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый согласно указаниям п.2.13 настоящей главы.
Значения коэффициента
1. Наружные стены, покрытия, перекрытия над проездами, а также перекрытия над холодными (проветриваемыми) подпольями зданий и сооружений, возводимых в районах Северной строительно-климатической зоны
2. Чердачные перекрытия со стальной, черепичной или асбестоцементной кровлей по разреженной обрешетке и покрытия с вентилируемыми прослойками
3. Чердачные перекрытия с кровлей из рулонных материалов
4. Стены и перекрытия (за исключением указанных в поз.8 и 9 настоящей таблицы), отделяющие отапливаемые помещения от сообщающихся с наружным воздухом неотапливаемых помещений (например, тамбуры)
5. Стены и перекрытия, отделяющие отапливаемые помещения от неотапливаемых, не сообщающихся с наружным воздухом
6. Перекрытия над подпольями, расположенными ниже уровня земли, при непрерывной конструкции цоколя с 1 м·ч·°С/ккал
7. То же, с 1 м·ч·°С/ккал и перекрытия над холодными подпольями, расположенными выше уровня земли
8. Перекрытия над неотапливаемыми подвалами, расположенными ниже уровня земли или имеющими наружные стены, выступающие над уровнем земли до 1 м, при наличии окон в наружных стенах подвалов
9. То же, при отсутствии окон
Нормируемые величины температурного перепада
для наружных стен
для покрытий и чердачных перекрытий
1. Жилые помещения, а также помещения общественных зданий (больницы, детские ясли-сады)
2. Помещения поликлиник и школ
3. Помещения общественных зданий (за исключением указанных в поз.1 и 2), административных зданий, а также вспомогательные здания и помещения промышленных предприятий, за исключением помещений с влажным и мокрым режимами
4. Отапливаемые помещения производственных зданий с расчетной относительной влажностью внутреннего воздуха менее 50%
5. То же, но с расчетной относительной влажностью внутреннего воздуха от 50 до 60%
6. Помещения производственных зданий с избыточными тепловыделениями и расчетной относительной влажностью внутреннего воздуха не более 45%
7. Помещения производственных зданий (промышленных, сельскохозяйственных и других предприятий) с расчетной влажностью внутреннего воздуха выше 60%:
а) в которых не допускается конденсация влаги на внутренних поверхностях стен и потолков
б) в которых не допускается конденсация влаги на внутренних поверхностях потолков
Примечания: 1. Температурный перепад между расчетной температурой воздуха и температурой поверхности пола следует принимать равным:
2 °С - для полов жилых зданий, больниц, детских яслей-садов;
2,5 °С - для плов общественных зданий, за исключением указанных выше, а также производственных зданий с постоянными рабочими местами, если на них не предусмотрены специальные мероприятия против охлаждения ног работающих. На участках, где отсутствуют постоянные рабочие места, не нормируется.
2. Расчетную разность между температурой воздуха помещения и температурой внутренней поверхности ограждающих конструкций в местах теплопроводных включений (диафрагм, толстых сквозных швов раствора кладок, прокладных рядов, стыков панелей, колонн и ригелей железобетонного каркаса и пр.), а также чердачных перекрытий помещений, указанных в п.7 "а" и "б", в графе 3 табл.2, допускается принимать равной .
3. Температурный перепад , а также не нормируются, и технические решения ограждающих конструкций принимаются по конструктивным соображениям, если это допустимо по условиям технологического процесса и когда:
а) тепловыделения значительно превышают потери тепла (более чем на 50%), либо когда избытки явного тепла превышают 20 ккал/м·ч, а влаговыделения незначительны;
6) внутренняя поверхность стен и покрытий подвергается интенсивному воздействию лучистого тепла или омывается сухим горячим воздухом;
в) площадь пола помещений на одного работающего более 100 м.
4. В табл.2 - температура точки росы внутреннего воздуха в °С.
Примечания: 1. Величину сопротивления теплопередаче наружных стен жилых зданий, определенную по формуле (1), при однослойных панельных стенах следует увеличивать на 10%, при многослойных панельных стенах на 20% При изготовлении панелей со знаком качества указанные надбавки не предусматривать.
2. Для наружных ограждающих конструкций с характеристикой тепловой инерции 2,5 жилых, общественных (больниц, поликлиник, детских яслей-садов) и производственных зданий, в которых по условиям технологии необходимо поддерживать постоянными температуру и относительную влажность воздуха, величину , определенную по формуле (1), следует увеличивать на 30%. При изготовлении конструкций со знаком качества указанную надбавку не предусматривать.
Коэффициент теплоотдачи от кирпича к воздуху
ГОСТ Р 54851-2011
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ ОГРАЖДАЮЩИЕ НЕОДНОРОДНЫЕ
Расчет приведенного сопротивления теплопередаче
Dissimilar building envelopes. Calculation of reduced total thermal resistance
Дата введения 2012-05-01
Сведения о стандарте
1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 14683:2007* "Тепловые мостики при строительстве зданий - Линейная теплопередача - Упрощенные методы и стандартные значения" (ISO 14683:2007 "Thermal bridges in building construction - Linear thermal transmittance - Simplified methods and default values, NEQ")
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
Настоящий стандарт устанавливает методы определения теплозащитных характеристик ограждающих конструкций зданий и сооружений в соответствии с требованиями Федерального закона N 384-ФЗ от 30 декабря 2009 г. "Технический регламент о безопасности зданий и сооружений", согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой - не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий осуществления различных технологических процессов.
Настоящий стандарт разработан с целью подтверждения соответствия теплотехнических характеристик наружных ограждений зданий и сооружений нормативным значениям и требованиям контроля этих показателей согласно [1] с учетом требований ГОСТ Р 51380 и ГОСТ Р 51387. Настоящий стандарт позволяет оценить уровень теплозащиты ограждающих конструкций при приемке зданий и последующей эксплуатации, наметить мероприятия по повышению уровня теплозащиты зданий в случае отклонения энергопотребления от действующих нормативных требований.
В рамках реализации Федерального закона N 261-ФЗ от 23 ноября 2009 г. "Об энергосбережении и повышении энергетической эффективности" настоящий стандарт является одним из базовых стандартов, обеспечивающих теплотехническими параметрами энергетический паспорт и энергоаудит эксплуатируемых зданий.
1 Область применения
Настоящий стандарт устанавливает методы расчета приведенного сопротивления теплопередаче неоднородных ограждающих конструкций помещений жилых, общественных, административных, бытовых, сельскохозяйственных, производственных зданий и сооружений, а также совокупности ограждающих конструкций, отделяющих внутренний объем здания от наружной среды.
В зависимости от типа ограждающей конструкции и теплотехнических неоднородностей, входящих в структуру ограждения, настоящий стандарт предлагает методы теплотехнического расчета обобщенной теплозащитной характеристики теплотехнически неоднородного ограждения, разделяющего пространства с различными температурно-влажностными средами (в пределах одного помещения, группы соседних помещений, этажа, всего фасада здания, ограждений, контактирующих снаружи с грунтом, и т.д.). Настоящий стандарт также учитывает в теплотехнических расчетах наружных ограждений такие виды теплотехнических неоднородностей, как примыкания элементов ограждения здания (наружные и внутренние углы, примыкания стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, примыкание наружных ограждений к внутренним), и отдельных элементов наружных ограждений (стыки между соседними панелями, откосы проемов, связи между облицовочными слоями ограждений).
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ Р 51263-99 Полистиролбетон. Технические условия
ГОСТ Р 51380-99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям
ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения
ГОСТ 11024-84 Панели стеновые наружные бетонные и железобетонные для жилых и общественных зданий. Общие технические условия
ГОСТ 19010-82 Блоки стеновые бетонные и железобетонные для зданий. Общие технические условия
ГОСТ 21562-76 Панели металлические с утеплителем из пенопласта. Общие технические условия
ГОСТ 23486-79 Панели металлические трехслойные стеновые с утеплителем из пенополиуретана. Технические условия
ГОСТ 24594-81 Панели и блоки стеновые из кирпича и керамических камней. Общие технические условия
ГОСТ 25485-89 Бетоны ячеистые. Технические условия
ГОСТ 25820-2000 Бетоны легкие. Технические условия
ГОСТ 26254-84 Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций
ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче
ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях
ГОСТ 31310-2005 Панели стеновые трехслойные железобетонные с эффективным утеплителем. Общие технические условия
ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия
ГОСТ 31360-2007 Изделия стеновые неармированные из ячеистого бетона автоклавного твердения. Технические условия
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем стандарте применяют следующие термины с соответствующими определениями:
3.1 теплопередача: Перенос теплоты от одной окружающей среды через ограждающую конструкцию к другой окружающей среде.
3.2 наружная ограждающая конструкция здания: Конструктивный элемент здания, защищающий внутреннее пространство, в котором поддерживаются требуемые параметры микроклимата, от воздействий наружной среды.
3.3 линейная теплотехническая неоднородность: Линейная зона примыкания двух ограждающих конструкций, влияющего на изменение теплового потока, проходящего через наружное ограждение (стык между соседними панелями, угол, образованный из двух наружных ограждений или наружного ограждения с внутренним, откос проема, соединительное ребро внутри ограждения и др.).
3.4 точечная теплотехническая неоднородность: Локальный соединительный элемент многослойного наружного ограждения, обеспечивающий его конструктивную целостность и повышающий теплопотери в зоне его прохождения (гибкие связи, дюбели, шпонки и другие точечные соединения, проходящие через теплоизоляционные слои ограждения),
3.5 условное сопротивление теплопередаче ограждающей конструкции , м·°С/Вт: Величина, характеризующая уровень сопротивления прохождению теплоты через однородную часть наружного ограждения при разности температур воздушных сред, расположенных по обе его стороны.
3.6 приведенное сопротивление теплопередаче ограждения , м·°С/Вт: Средневзвешенное по площади сопротивление теплопередаче совокупности видов ограждающих фрагментов и их элементов, образующих теплотехнически неоднородную конструкцию (панель, окно, витраж, светпропускающий фонарь, наружную дверь, ворота), часть здания (стену, фасад, покрытие, перекрытие над холодным подвалом или подпольем, ограждение, контактирующее с грунтом, ограждение, разделяющее помещения с различными температурами внутреннего воздуха) или наружное ограждение здания в целом.
3.7 коэффициент теплотехнической однородности : Безразмерный показатель, оценивающий снижение уровня теплозащиты ограждения вследствие наличия в нем различного вида теплотехнических неоднородностей (соединительных элементов облицовок ограждения, пронзающих теплоизоляционные слои, стыков между элементами ограждающих конструкций с примыканием к ним внутренних ограждений, откосов, угловых соединений, в том числе примыканий стен к покрытиям, перекрытиям над холодными пространствами, мест закрепления в стенах балконных плит и т.п.) и численно выражаемый отношением приведенного сопротивления теплопередаче ограждения к сопротивлению теплопередаче его зоны, удаленной от теплопроводных включений.
4 Методы расчета приведенного сопротивления теплопередаче наружных ограждающих конструкций
4.1 Общие положения
4.1.1 Приведенное сопротивление теплопередаче наружной неоднородной ограждающей конструкции здания , м·°С/Вт, представляет собой основную теплозащитную характеристику наружного ограждения, в основу расчета которого положена усредненная по площади плотность теплового потока , Вт/м, проходящего через ограждение в расчетных условиях эксплуатации
Численные значения теплового потока, проходящего через неоднородное ограждение, определяют на основе расчета одно-, двух- и трехмерных температурных полей. Участки многослойного ограждения, имеющие однородные теплоизоляционные, конструкционные и прочие слои, расположенные перпендикулярно к направлению теплового потока, возникающего при эксплуатации здания, и удаленные от всякого рода теплотехнических неоднородностей и теплопроводных включений, обеспечивают равномерную по площади теплопередачу и характеризуются условным (по глади) сопротивлением теплопередаче.
При проектировании наружных ограждающих конструкций здания в силу конструктивных особенностей оболочки здания и видов наружных ограждений возникают различного рода теплотехнические неоднородности: они в силу конструктивных особенностей примыкания наружных и внутренних ограждений имеют преимущественно линейный характер (наружные и внутренние углы наружных стен, примыкания наружных стен к внутренним стенам и перекрытиям, примыкания наружных стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, стыки между соседними панелями, откосы проемов). Теплопотери через эти виды теплотехнических неоднородностей определяют расчетом на ЭВМ двухмерных стационарных температурных полей фрагментов наружных ограждений при расчетных значениях температур разделяемых воздушных сред и условиях теплообмена на поверхностях расчетного фрагмента.
В многослойных ограждающих конструкциях для обеспечения конструктивной целостности и устойчивости в эксплуатационных условиях вводят различные типы связей между облицовочными слоями (соединительные ребра, в т.ч. перфорированные, гибкие стержневые связи, шпонки). К этой категории неоднородностей относятся угловые примыкания откосов проемов, примыкания угла наружных стен к покрытию или перекрытию первого этажа. Теплопотери через эти виды теплопроводных включений или примыканий определяют расчетом на ЭВМ двухмерных (в цилиндрических координатах) или трехмерных стационарных температурных полей фрагментов при расчетных значениях температур и условиях теплообмена.
4.1.2 Таким образом, теплотехнический расчет неоднородных наружных ограждающих конструкций, содержащих углы, проемы с заполнениями (оконными и дверными блоками, воротами), соединительные элементы между наружными облицовочными слоями (ребра, шпонки, стержневые связи), сквозные и несквозные теплопроводные включения, выполняют на основе расчета температурных полей. Приведенное сопротивление теплопередаче , м·°С/Вт, неоднородной ограждающей конструкции или ее участка (фрагмента) вычисляют по формуле
где - площадь неоднородной ограждающей конструкции (стены, окна, двери, ворот) или ее фрагмента, м, по размерам с внутренней стороны, включая откосы оконных и дверных проемов (для стен);
- суммарный тепловой поток через конструкцию или ее фрагмент площадью , Вт, определяемый на основе расчета температурного поля на ЭВМ либо экспериментально по ГОСТ 26254 или ГОСТ 26602.1 с внутренней стороны;
- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый в соответствии с таблицей 6 [1] с учетом примечания к этой таблице;
- расчетная температура внутреннего воздуха, °С, принимаемая по ГОСТ 30494;
- расчетная температура наружного воздуха, °С, принимаемая по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92, см. [1].
4.1.3 На основе расчета на ЭВМ температурных полей ограждающей конструкции определяют также температуры на их поверхностях . По полученным значениям устанавливают соответствие требуемым температурным характеристикам наружных ограждений:
- расчетному перепаду температур между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, определяемому по формуле (4) [1]; при этом расчетный перепад температур не должен превышать нормируемых значений , установленных в таблице 5 [1];
Читайте также: