Коэффициент пуассона бетона сп
ВВЕДЕНИЕ
Настоящий Свод правил содержит рекомендации по расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений из тяжелого бетона без предварительного напряжения арматуры, которые обеспечивают выполнение обязательных требований СНиП 52-01-03 «Бетонные и железобетонные конструкции. Основные положения».
Решение вопроса о применении Свода правил при проектировании бетонных и железобетонных конструкций конкретных зданий и сооружений относится к компетенции заказчика или проектной организации. В случае если принято решение о применении настоящего Свода правил, должны быть выполнены все установленные в нем требования.
Приведенные в Своде правил единицы физических величин выражены: силы - в ньютонах (Н) или в килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - в мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм.
Свод правил разработали д-ра техн. наук А. С. Залесов, А.И. Звездов, Т.А. Мухамедиев, Е.А.Чистяков (ГУЛ «НИИЖБ» Госстроя России).
СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ
БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
CONCRETE AND REINFORCED CONCRETE STRUCTURES WITHOUT PRESTRESSING
Дата введения 2004-03-01
1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий Свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, выполненных из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного Напряжения арматуры и эксплуатируемых в климатических условиях России, в среде с неагрессивной степенью воздействия, при статическом действии нагрузки.
Свод правил не распространяется на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений.
2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем Своде правил использованы ссылки на следующие нормативные документы:
СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения.
СНиП 2.01.07-85* Нагрузки и воздействия
ГОСТ 13015.0-2003 Конструкции и изделия бетонные и железобетонные сборные. Общие технические требования
3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
В настоящем Своде правил использованы термины по СНиП 52-01 и другим нормативным документам, на которые имеются ссылки в тексте.
4 ОБЩИЕ УКАЗАНИЯ
4.1 ОСНОВНЫЕ ПОЛОЖЕНИЯ
4.1.1 Бетонные и железобетонные конструкции должны быть обеспечены с требуемой надежностью от возникновения всех видов предельных состояний расчетом, выбором показателей качества материалов, назначением размеров и конструированием согласно указаниям настоящего Свода правил. При этом должны быть выполнены технологические требования при изготовлении конструкций и соблюдены требования по эксплуатации зданий и сооружений, а также требования по экологии, устанавливаемые соответствующими нормативными документами.
4.1.2 Конструкции рассматривают как бетонные, если их прочность обеспечена одним только бетоном.
Бетонные элементы применяют:
а ) преимущественно на сжатие при расположении продольной сжимающей силы в пределах поперечного сечения элемента;
б ) в отдельных случаях в конструкциях, работающих на сжатие, при расположении продольной сжимающей силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования и когда применение бетонных конструкций целесообразно.
4.2 ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ
4.2.1 Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:
- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);
- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).
Расчеты по предельным состояниям первой группы, содержащиеся в настоящем СП, включают расчет по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.
Расчеты по предельным состояниям второй группы, содержащиеся в настоящем СП, включают расчеты по раскрытию трещин и по деформациям.
4.2.2 Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий: изготовления, транспортирования, возведения и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям.
4.2.3 Расчеты железобетонных конструкций необходимо, как правило, производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре.
Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить по методам строительной механики, как правило, с учетом физической и геометрической нелинейности работы конструкций.
4.2.4 При проектировании бетонных и железобетонных конструкций надежность конструкций устанавливают расчетом путем использования расчетных значений нагрузок и воздействий, расчетных значений характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий и сооружений.
Нормативные значения нагрузок и воздействий, коэффициентов сочетаний, коэффициентов надежности по нагрузке, коэффициентов надежности по назначению конструкций, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07.
4.2.5 При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элементов следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициента динамичности, но не ниже 1,25.
4.2.6 При расчете по прочности бетонных и железобетонных элементов на действие сжимающей продольной силы следует учитывать случайный эксцентриситет еа, принимаемый не менее:
1 /600 длины элемента или расстояния между его сечениями, закрепленными от смещения;
1 /30 высоты сечения;
Для элементов статически неопределимых конструкций значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения е0 принимают равным значению эксцентриситета, полученного из статического расчета, но не менее еа.
Для элементов статически определимых конструкций эксцентриситет е0 принимают равным сумме эксцентриситетов - из статического расчета конструкций и случайного.
5 МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
5.1 БЕТОН
Показатели качества бетона и их применение при проектировании
5.1.1 Для бетонных и железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Свода правил, следует предусматривать конструкционный тяжелый бетон средней плотности от 2200 кг/м 3 до 2500 кг/м 3 включительно.
5.1.2 Основными показателями качества бетона, устанавливаемыми при проектировании, являются:
а) класс бетона по прочности на сжатие В;
б) класс по прочности на осевое растяжение В, (назначают в случаях, когда эта характеристика имеет главенствующее значение и ее контролируют на производстве);
в) марка по морозостойкости F (назначают для конструкций, подвергаемых действию попеременного замораживания и оттаивания);
г) марка по водонепроницаемости W (назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости).
Классы бетона по прочности на сжатие В и осевое растяжение В t отвечают значению гарантированной прочности бетона, МПа, с обеспеченностью 0,95.
5.1.3 Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:
а) классов по прочности на сжатие:
В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;
б) классов по прочности на осевое растяжение:
в) марок по морозостойкости:
F50; F75; F100; F150; F200; F300; F400; F500;
г) марок по водонепроницаемости:
W2; W4; W6; W8; W10; W12.
5.1.4 Возраст бетона, отвечающий его классу по прочности на сжатие и осевое растяжение (проектный возраст), назначают при проектировании исходя из возможных реальных сроков загружения конструкций проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 сут.
Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0 и стандартами на конструкции конкретных видов.
5.1.5 Для железобетонных конструкций рекомендуется применять класс бетона по прочности на сжатие не ниже В15.
5.1.6 Марку бетона по морозостойкости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной отрицательной температуре наружного воздуха в холодный период от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75, а при расчетной температуре наружного воздуха выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.
В остальных случаях требуемые марки бетона по морозостойкости устанавливают в зависимости от назначения конструкций и условий окружающей среды по специальным указаниям.
5.1.7 Марку бетона по водонепроницаемости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют.
В остальных случаях требуемые марки бетона по водонепроницаемости устанавливают по специальным указаниям.
Нормативные и расчетные значения характеристик бетона
Нормативные значения прочностных характеристик бетона
5.1.8 Основными прочностными характеристиками бетона являются нормативные значения:
- сопротивления бетона осевому сжатию Rb, n ;
- сопротивления бетона осевому растяжению Rb t , n .
Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) и осевому растяжению (при назначении класса бетона по прочности на сжатие) принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 5.1.
При назначении класса бетона по прочности на осевое растяжение В t , нормативные значения сопротивления бетона осевому растяжению Rb t , n принимают равными числовой характеристике класса бетона на осевое растяжение.
Расчетные значения прочностных характеристик бетона
5.1.9 Расчетные значения сопротивления бетона осевому сжатию Rb и осевому растяжению Rb t , определяют по формулам:
1,3 - для предельных состояний по несущей способности (первая группа);
1,0 - для предельных состояний по эксплуатационной пригодности (вторая группа).
1,5 - для предельных состояний по несущей способности при назначении класса бетона по прочности на сжатие;
1,3 - для предельных состояний по несущей способности при назначении класса бетона по прочности на осевое растяжение;
1,0 - для предельных состояний по эксплуатационной пригодности.
Расчетные значения сопротивления бетона Rb , Rb t , Rb,ser, Rb t , ser (c округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы - соответственно в таблицах 5.2 и 5.3, второй группы - в таблице 5.1.
Нормативные значения сопротивления бетона Rb,n и Rb t ,n и расчетные значения сопротивления бетона для предельных состояний второй группы Rb,ser и Rb t ,ser , МПа, при классе бетона по прочности на сжатие
Сжатие осевое (призменная прочность) Rb,n , Rb,ser
Растяжение осевое Rb t ,n , Rb t ,ser
Расчетные значения сопротивления бетона для предельных состояний первой группы Rb и Rb t МПа, при классе бетона по прочности на сжатие
Сжатие осевое (призменная прочность) Rb
Растяжение осевое Rb t
Расчетные значения сопротивления бетона для предельных состояний первой группы Rb t , МПа, при классе бетона по прочности на осевое растяжение
Растяжение осевое Rb t
Деформационные характеристики бетона
5.1.11 Основными деформационными характеристиками бетона являются значения:
- начального модуля упругости Е b ;
5.1.12 Значения предельных относительных деформаций бетона принимают равными:
при непродолжительном действии нагрузки:
при продолжительном действии нагрузки - по таблице 5.6 в зависимости от относительной влажности окружающей среды.
5.1.13 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 5.4.
При продолжительном действии нагрузки значения начального модуля деформаций бетона определяют по формуле
Относительная влажность воздуха окружающей среды, %
Примечание - Относительную влажность воздуха окружающей среды. принимают по СНиП 23-01 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.
Относительная влажность воздуха окружающей среды. %
Относительные деформации бетона при продолжительном действии нагрузки
Примечание - Относительную влажность воздуха окружающей среды принимают по СНиП 23-01 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.
Диаграммы состояния бетона
а - трехлинейная диаграмма состояния сжатого бетона;
б - двухлинейная диаграмма состояния сжатого бетона
Рисунок 5.1 - Диаграммы состояния сжатого бетона
5.1.17 В качестве расчетных диаграмм состояния бетона, определяющих связь между напряжениями и относительными деформациями, принимают трехлинейную и двухлинейную диаграммы (рисунок 5.1, а, б).
Диаграммы состояния бетона используют при расчете железобетонных элементов по нелинейной деформационной модели.
- при продолжительном действии нагрузки - по таблице 5.6.
Значения приведенного модуля деформации бетона E b, red принимают:
- при продолжительном действии нагрузки - по таблице 5.6.
5.1.21 При расчете прочности железобетонных элементов по нелинейной деформационной модели для определения напряженно-деформированного состояния сжатой зоны бетона используют диаграммы состояния сжатого бетона, приведенные в 5.1.18 и 5.1.19 с деформационными характеристиками, отвечающими непродолжительному действию нагрузки. При этом в качестве наиболее простой используют двухлинейную диаграмму состояния бетона.
5.1.22 При расчете образования трещин в железобетонных конструкциях по нелинейной деформационной модели для определения напряженно-деформированного состояния сжатого и растянутого бетона используют трехлинейную диаграмму состояния бетона, приведенную в 5.1.18 и 5.1.20 с деформационными характеристиками, отвечающими непродолжительному действию нагрузки. Двухлинейную диаграмму (5.1.19) как наиболее простую используют для определения напряженно-деформированного состояния растянутого бетона при упругой работе сжатого бетона.
5.1.23 При расчете деформаций железобетонных элементов по нелинейной деформационной модели при отсутствии трещин для определения напряженно-деформированного состояния в сжатом и растянутом бетоне используют трехлинейную диаграмму состояния бетона с учетом непродолжительного и продолжительного действия нагрузки. При наличии трещин для определения напряженно-деформированного состояния сжатого бетона помимо указанной выше диаграммы используют как наиболее простую двухлинейную диаграмму состояния бетона с учетом непродолжительного и продолжительного действия нагрузки.
5.1.24 При расчете раскрытия нормальных трещин по нелинейной деформационной модели для определения напряженно-деформированного состояния в сжатом бетоне используют диаграммы состояния, приведенные в 5.1.18 и 5.1.19 с учетом непродолжительного действия нагрузки. При этом в качестве наиболее простой используют двухлинейную диаграмму состояния бетона.
5.2 АРМАТУРА
Показатели качества арматуры
5.2.1 Для армирования железобетонных конструкций следует применять отвечающую требованиям соответствующих государственных стандартов или утвержденных в установленном порядке технических условий арматуру следующих видов:
- горячекатаную гладкую и периодического профиля с постоянной и переменной высотой выступов (соответственно кольцевой и серповидный профиль) диаметром 6-40 мм;
- термомеханически упрочненную периодического профиля с постоянной и переменной высотой выступов (соответственно кольцевой и серповидный профиль) диаметром 6- 40 мм;
- холоднодеформированную периодического профиля диаметром 3-12 мм.
5.2.2 Основным показателем качества арматуры, устанавливаемым при проектировании, является класс арматуры по прочности на растяжение, обозначаемый:
А - для горячекатаной и термомеханически упрочненной арматуры;
В - для холоднодеформированной арматуры.
Классы арматуры по прочности на растяжение А и В отвечают гарантированному значению предела текучести (с округлением) с обеспеченностью не менее 0,95, определяемому по соответствующим стандартам.
Кроме того, в необходимых случаях к арматуре предъявляют требования по дополнительным показателям качества: свариваемость, пластичность, хладостойкость и др.
5.2.3 Для железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Свода правил, следует предусматривать арматуру:
- гладкую класса А240 (A-I);
- периодического профиля классов А300 (А- II), А400 (A-III, A400C), А500 (А500С), В500 (Вр- I , В500С).
В качестве арматуры железобетонных конструкций, устанавливаемой по расчету, следует преимущественно применять арматуру периодического профиля классов А500 и А400, а также арматуру класса В500 в сварных сетках и каркасах. При обосновании экономической целесообразности допускается применять арматуру более высоких классов.
5.2.4 При выборе вида и марок стали для арматуры, устанавливаемой по расчету, а также прокатных сталей для закладных деталей следует учитывать температурные условия эксплуатации конструкций и характер их нагружения.
При других условиях эксплуатации класс арматуры и марку стали принимают по специальным указаниям.
При проектировании анкеровки арматуры в бетоне и соединений арматуры внахлестку (без сварки) следует учитывать характер поверхности арматуры.
При проектировании сварных соединений арматуры следует учитывать способ изготовления арматуры.
5.2.5 Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций следует применять горячекатаную арматурную сталь класса А240 марок Ст3сп и Ст3пс.
В случае если возможен монтаж конструкций при расчетной зимней температуре ниже минус 40 °С, для монтажных петель не допускается применять сталь марки Ст3пс.
Коэффициент Пуассона для расчета на программе.
С таким же вопросом столкнулся учась в институте: почему-то преподаватели твердили, объясняя как юзать Z-Soil, коэф-нт Пуассона для бетона брать 0.15! :? Почему - никто не объяснял. Но с другой стороны, когда подогнать расчёт к нужным результатам пытались - подставляли этот коэф-нт и 0.2 и 0.3 но это очень мало влияло на наши расчёты (мы подземку считали, а там 90% результата - это характеристики грунтов)
Если кто знает почему так - поделитесь опытом
Эта величина для бетона (железобетона) "плавающая", т.к. зависит от развития процессов микро- и макротрещинообразования, армирования и лежит в пределах 0,1..0,5. Для среднего случая получается как раз где-то 0,15-0,2. Это не сильно принципиально.проектирование гидротехнических сооружений
Дмитрий, гуру, я поражён услышанным - коэф-нт Пуассона у бетона до 0,5. Бетон на основе заполнителей из резины чтоли. twisted: Вот и мне тоже интересно по поводу 0.5 в Снипе 0.2 указано.проектирование гидротехнических сооружений
Да я даже не про СНиП говорю, а про 0.5! - на сколько я помню (а память меня редко подводит) ню близкое к 0,5 - у материалов типа каучука или резины - на сколько сожмёшь - на столько он и расширится (т.е. не сжимаемый материал!). :twisted: Клёвый бетончик однако. Все колонны бочёнками стояли бы тогда.расчеты МКЭ и CFD. ктн
Подмосковье в принципе, при развитой пластике металла пуассон принимают равным 0.5для бетона после разрушения при нестесненных смещениях тоже можно наверное написать 0.5.
то есть он мб разным в одной конструкции в зависимости от степени местного трещинообразования 1. Пособие к СНиП: 2.12 (2.16). Начальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) при¬нимается равным 0,2 для всех видов бетона, а мо¬дуль сдвига бетона G — равным 0,4 соответствую¬щих значений Eb, указанных в табл. 11.
Здесь прошу обратить внимание на словоНачальный .
2. Если речь идет о коэффициенте упругопластических деформаций бетона, т.е. отношение упругих к полным деформациям, то по данным опытов для бетона этот коэффициент изменяется от 1 (при упругой работе) до 0,15 . . . т.е. при увеличении напряжений и длительности приложения нагрузки он уменьшается .
3. Этот же коэффициент при растяжении дает среднее значение 0,5 .
Вывод: смотря какая стадия работы бетона вас интересует этот коэффициент бедет иметь различное значение
0,17 - видимо запас, учитывающий возможность трещинообразования или пластических шарниров или еще чего-нибудь там, включая тараканов в голове разработчиков
проектирование гидротехнических сооружений
for Студент063И всё-таки давай мыслить разумно: как у тебя написаноНачальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) принимается равным 0,2 |
при увеличении напряжений и длительности приложения нагрузки он уменьшается |
И каким таким волшебным образом он уменьшится от 0.2 до 1 . :?
Я так понимаю пункт 1 твоего изречения ты дёрнул из СНиП, а вот в происхождении пункта 2 я позволю себе усомниться. Дай ссылочку - посмотреть хотца! - ИМХО такое значение теоретически возможно получить при минимальных значениях напряжений ДЛЯ КОЭФФИЦИЕНТА УПРУГО-ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ (а мы говорим о коэф-те Пуасона - см. учебник внимательнее), т.е. когда все деформации носят упругий характер, а бетон так работать в нормальных условиях не заставишь.
for СергейД:
как ты там написал.
для бетона после разрушения при нестесненных смещениях тоже можно наверное написать 0.5. |
Я так понимаю пункт 1 твоего изречения ты дёрнул из СНиП |
а вот в происхождении пункта 2 я позволю себе усомниться. Дай ссылочку - посмотреть хотца! |
Железобетонные конструкции: Общий курс: Учеб. для вузов. - 5-е изд., перераб. и доп.-М.:Стройиздат, 1991. стр. 33
настольная книга студента ПГС по каф. ЖБК |
проектирование гидротехнических сооружений
ИМХО в книжице неясность, а ты её неверно интерпретируешь.
Специально сейчас в 2-х расчётных программах посмотрел - там просто невозможно задать коэф-нт пуассона больше 0,499999999 - наверно это не спроста? :wink:
Пусть Гуру ж/б нас рассудят и наставят на путь истинный
Коэф. пуассона = 0,5 - материал абсолютно несжимаем, т.е. происходит изменение формы без изменения объема к стремится к бесконечности, а Е=3Gкоэф пуссона = 0 деформация происходит только по оси z (поперечная деформация равна нулю, и следовательно Е=к=2G Да.
Интереснийший вопрос я поднял.
А у нас между прочим целая мастерская, которая дома строит, с коэффициентом 0.17 считают, без объяснения причин.
Этот коэффициент им порекомендовал один из преподов из МГСУ
, опять без объяснения причин. Очень тяжело менять, ничего не меняя, но мы будем! (М. Жванецкий)
Вопрос как правильно учесть работу железобетона, ничего не учитывая, только одним значением коэффициента поперечной деформации.
У Карпенко в книге "Общие модели механики железобетона" есть зависимость этого коэффициента от уровня напряжений (точнее коэффициентов, т.к. железобетон предлагается рассматривать ортотропным материалом, а не изотропным как это обычно делается).
Но как практически применять его теорию не понимаю. (По крайней мере можно использовать его зависимость коэффициента поперечной деформации бетона от уровня напряжений).
Интересно, а что в Еврокоде по этому вопросу?
СНиП (СП) допускает принимать 0,2. Но это для бетона, а не для железобетона. А тут вопрос о железобетоне, как я понял. я поражён услышанным - коэф-нт Пуассона у бетона до 0,5. Бетон на основе заполнителей из резины чтоли.
ню близкое к 0,5 - у материалов типа каучука или резины - на сколько сожмёшь - на столько он и расширится (т.е. не сжимаемый материал!). Клёвый бетончик однако. Все колонны бочёнками стояли бы тогда. Нет, резина здесь совершенно ни при чем!
Но, в предельной стадии, при фактическом отсутствии целостности и сплошности бетона вследствии развития трещин такая ситуация вполне возможна.
В нормальных условиях (не в стадии разрушения или близкой к нему) эта величина будет где-то около рекомендуемой нормами. В нормальных условиях (не в стадии разрушения или близкой к нему) эта величина будет где-то около рекомендуемой нормами. Вопрос действительно интересный. Нормы ничего не рекомендуют для коэффициента Пуассона железобетона. Только для бетона. А в железобетоне трещины это нормальное расчетное состояние.
Может быть у Бондаренко есть какое-то обоснование какой коэффициент принимать для расчета железобетона в программах (Бондаренко В.М. "Инженерные методы нелинейной теории железобетона"). Есть ли у кого нибудь эта книжка? Предлагаю следующий вариант:
Из литературы ясно, что коэффициент лежит для сжимаемого бетона в пределах от 0,15 до 1 (кстати если смотреть Василия Ивановича Мурашева за 1962г. - наставника Байкова и Сигалова то там от 0,2 до 1), для растянутого всреднем 0,5.
Кстати Лира где-то дает по умолчанию - 0,2.
Итак почему же - 0,17?
Из литературы ясно что коэффициент меняется с изменением НДС бетона, т.е. чем больше напряжения, тем он меньше!
Вывод 1: по хорошему получается своеобразный учет нелинейности однако!
Вывод 2: если ты ученый и считаешь какую-то научную задачу то надо определять коэффициент на каждой стадии, в зависимости от стадии НДС или процесса работы бетона и т.д. и т.п.!
Вывод 3: если элемент твоего исследования работает исключительно на растяжение => принимаешь 0,5!
Вывод 4: если ты проектировщик, расчетчик и т.п. то согласно СНиП следует принимать 0,2!
Вывод 5: если ты в противоречии Вывода 4 примешь 0,17, то это пойдет в запас.
Вывод 6: почему же не более 0,2? Наверное можно проанализировать, взяв любой учебник по ЖБК, и рассмотрев пример работы ЖБ балки. Помните там несколько стадий работы балки: I, Ia, II, III. Так вот стадия III положена в основу расчета по разрушающим нагрузкам! Полагаю что именно 0,17-0,2 соответствует этой стадии работы балки а точнее напряженному состаянию в бетоне сжатой зоне над трещиной.
А выяснить это вероятно можно было только опытным путем! Причем как мне кажется все еще зависит от класса бетона!
Поправьте если где-то ошибся. возможно у кого-то есть другие соображения .
Ну вот, посмотрел, наконец, у Карпенко:
"Экспериментальные исследования показывают, что с увеличением напряжений сжатия коэффициент поперечной деформации mub возрастает от некоторого начального значения mub0=0.15-0.2 до значений, приближающихся, а иногда и превышающих, 0.5 в вершине диаграммы.
Увеличение уровня напряжений растяжения приводит, по некоторым данным (Берг О.Я. Физические основы теории прочности бетона и железобетона), к уменьшению коэффициента поперечной деформации".
Также он приводит зависимости для измениния этого коэффициента.
Также из этого можно сделать некоторые выводы:
1. Начальная величина коэффициента Пуассона бетона (железобетона) может быть принята 0.15-0.2. Эта же величина может использоваться в расчетах без учета неупругого деформирования ж/б или с учетом оного (см. нормы: СНиП, СП).
2. С ростом напряжений сжатия коэффициент Пуассона возрастает (относительно начальных значений) вплоть до 0.5 или даже больше.
3. С ростом напряжений растяжения коэффициент Пуассона уменьшается (относительно начальных значений).
Коэффициент пуассона бетона сп
БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ. ОСНОВНЫЕ ПОЛОЖЕНИЯ
Concrete and won concrete construction
____________________________________________________________________
Текст Сравнения СП 63.13330.2012 с СП 63.13330.2018 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2013-01-01
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛЬ - НИИЖБ им.А.А.Гвоздева - институт ОАО "НИЦ "Строительство".
Изменение N 1 к СП 63.13330.2012 - НИИЖБ им.А.А.Гвоздева - институт АО "НИЦ "Строительство"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики. Изменение N 1 к СП 63.13330.2012 подготовлено к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет.
Пункты, таблицы, приложения, в которые внесены изменения, отмечены в настоящем своде правил звездочкой.
Изменения N 2, 3 внесены изготовителем базы данных
Введение
Настоящий свод правил разработан с учетом обязательных требований, установленных в Федеральных законах от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" и содержит требования к расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений.
Свод правил разработан авторским коллективом НИИЖБ им.А.А.Гвоздева - института ОАО "НИЦ "Строительство" (руководитель работы - д-р техн. наук Т.А.Мухамедиев; доктора техн. наук А.С.Залесов, A.И.Звездов, Е.А.Чистяков, канд. техн. наук С.А.Зенин) при участии РААСН (доктора техн. наук В.М.Бондаренко, Н.И.Карпенко, В.И.Травуш) и ОАО "ЦНИИпромзданий" (доктора техн. наук Э.Н.Кодыш, Н.Н.Трекин, инж. И.К.Никитин).
Изменение N 3 к своду правил разработано авторским коллективом АО "НИЦ "Строительство" - НИИЖБ им.А.А.Гвоздева (руководитель организации-разработчика - д-р техн. наук А.Н.Давидюк, руководитель темы - канд. техн. наук В.В.Дьячков; Д.Е.Климов, С.О.Слышенков).
1* Область применения
Настоящий свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, эксплуатируемых в климатических условиях России (при систематическом воздействии температур не выше 50°С и не ниже минус 70°С), в среде с неагрессивной степенью воздействия.
Свод правил устанавливает требования к проектированию бетонных и железобетонных конструкций, изготовляемых из тяжелого, мелкозернистого, легкого, ячеистого и напрягающего бетонов и содержит рекомендации по расчету и конструированию конструкций с композитной полимерной арматурой.
Требования настоящего свода правил не распространяются на проектирование сталежелезобетонных конструкций, фибробетонных конструкций, бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений, а также на конструкции, изготовляемые из бетонов средней плотностью менее 500 и свыше 2500 кг/м, бетонополимеров и полимербетонов, бетонов на известковых, шлаковых и смешанных вяжущих (кроме применения их в ячеистом бетоне), на гипсовом и специальных вяжущих, бетонов на специальных и органических заполнителях, бетона крупнопористой структуры.
2* Нормативные ссылки
В настоящем своде правил использованы нормативные ссылки на следующие документы:
ГОСТ 4.212-80 Система показателей качества продукции. Строительство. Бетоны. Номенклатура показателей
ГОСТ 380-2005 Сталь углеродистая обыкновенного качества. Марки
ГОСТ 535-2005 Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия
ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия
ГОСТ 2590-2006 Прокат сортовой стальной горячекатаный круглый. Сортамент
ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия
ГОСТ 7473-2010 Смеси бетонные. Технические условия
ГОСТ 7566-94 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение
ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия
ГОСТ 8731-74 Трубы стальные бесшовные горячедеформированные. Технические требования
ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент
ГОСТ 8736-2014 Песок для строительных работ. Технические условия
ГОСТ 8829-94 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний нагружением. Правила оценки прочности, жесткости и трещиностойкости
ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости
ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам
ГОСТ 10181-2014 Смеси бетонные. Методы испытания
ГОСТ 10884-94 Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия
ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия
ГОСТ 12730.0-78 Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости
ГОСТ 12730.1-78 Бетоны. Метод определения плотности
ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 13087-81 Бетоны. Методы определения истираемости
ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности.
ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности.
ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля
ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия
ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические требования
ГОСТ 24705-2004 (ИСО 724:1993) Основные нормы взаимозаменяемости. Резьба метрическая. Основные размеры
ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования
ГОСТ 25781-83 Формы стальные для изготовления железобетонных изделий. Технические условия
ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия
ГОСТ 27005-2014 Бетоны легкие и ячеистые. Правила контроля средней плотности
ГОСТ 27006-86 Бетоны. Правила подбора составов
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций
ГОСТ 33530-2015 (ISO 6789:2003) Инструмент монтажный для нормированной затяжки резьбовых соединений. Ключи моментные. Общие технические условия
ГОСТ Р 52085-2003 Опалубка. Общие технические условия
ГОСТ Р 52086-2003 Опалубка. Термины и определения
ГОСТ Р 52544-2006 Прокат арматурный свариваемый периодического профиля классов А 500С и В 500С для армирования железобетонных конструкций. Технические условия
СП 2.13130.2012 "Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты" (с изменением N 1)
СП 14.13330.2014 "СНиП II-7-81* Строительство в сейсмических районах" (с изменением N 1)
СП 20.13330.2016 "СНиП 2.01.07-85* Нагрузки и воздействия"
СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"
СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии"
СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий"
СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменением N 1)
Модуль упругости и коэффициент Пуассона бетона (понятие и значение)
Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. Данный СП действующий и обязательных к применению (см. пост.985)
Согласно таблицы 6.11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона:
Бетон | Значение модуля упругости бетона при сжатии, Eb, МПа |
B10 | 19000 МПа |
В12,5 | 21500 МПа |
В15 | 24000 МПа |
В20 | 27500 МПа |
В25 | 30000 МПа |
В30 | 32500 МПа |
В35 | 34500 МПа |
При продолжительном действии нагрузки модуль упругости бетона определяется по формуле:
-коэффициент ползучести бетона, принимаемый по таблице 6.12 п.6.1.16
Согласно таблицы 6.12 п.6.1.16 СП 63.13330.2018 для тяжелого бетона B10-B35:
Относительная влажность воздуха окружающей среды, % | В10 | В15 | В20 | В25 | В30 | В35 |
Выше 75 | 2,8 | 2,4 | 2,0 | 1,8 | 1,6 | 1,5 |
40-75 | 3,9 | 3,4 | 2,8 | 2,5 | 2,3 | 2,1 |
Ниже 40 | 5,6 | 4,8 | 4,0 | 3,6 | 3,2 | 3,0 |
Примечание: Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.
Согласно п.6.1.17 СП 63.13330.2018 коэффициент поперечной деформации бетона (коэффициент Пуассона) допускается принимать 0,2.
Коэффициент Пуассона для грунта по ГОСТ 12248
- для крупнообломочных грунтов равен 0,27
- для песка составляет от0,30 до 0,35 в зависимости от плотности
- для супеси составляет от 0,30 до 0,35 в зависимости от плотности
- для суглинков составляет от 0,35 до 0,37 в зависимости от плотности
- для твердой глины (при показателе текучести IL=0) составляет от0,20 до 0,30 в зависимости от плотности
- для полутвердой глины (при показателе текучести IL от 0 до 0,25) составляет от 0,30 до 0,38 в зависимости от плотности
- для тугопластичной глины (при показателе текучести IL от 0,25 до 0,5 ) составляет от 0,38 до 0,45 в зависимости от плотности
- для мягкопластичной глины (при показателе текучести IL от 0,5 до 0,75 ) составляет от 0,38 до 0,45 в зависимости от плотности
- для текучепластичной глины (при показателе текучести IL от 0,75 до 1 ) составляет от 0,38 до 0,45 в зависимости от плотности
Меньшие значения коэффициента Пуассона необходимо применять при большей плотности грунта
Читайте также: