Коэффициент приведения арматуры к бетону расчет
Коэффициент приведения арматуры к бетону расчет
46. Что означают 100 суток для преднапряженного железобетона?
Это срок с момента изготовления конструкции, в течение которого она должна быть загружена проектной нагрузкой. Дело в том, что формулы для определения потерь напряжений от усадки и ползучести бетона выведены исходя из этого срока. Если конструкция загружена в более раннем возрасте, то это даже хорошо: меньше потери напряжений, больше сила обжатия, выше жесткость и трещиностойкость. Если конструкция пролежала на складе более 100 суток, то потери напряжений превысят расчетные значения. Такую конструкцию необходимо пересчитать (а иногда и испытать) и, возможно, придется использовать под более низкую нагрузку.
Перерасчет начинается с того, что проектные потери от усадки и длительной ползучести умножают на коэффициент jl = 4t/(100+3t), где t – фактический возраст изделия в сутках. Далее с учетом измененной силы обжатия вновь проверяют жесткость и трещиностойкость.
47. Что такое коэффициент точности натяжения?
В производстве любых изделий могут быть неточности, которые заранее учитывают и допускают в ограниченных размерах. Одной из них при изготовлении преднапряженных изделий является погрешность в натяжении арматуры, что вызывает увеличение или уменьшение величины предварительного напряжения ssp по сравнению с расчетной – это учитывается умножениемssp на коэффициент точности натяжения gsp. Если неблагоприятное влияние на работу конструкции оказывает пониженное значение ssp (например, на образование трещин в зоне, растянутой при эксплуатации), то gsp < 1; если повышенное (например, на прочность в стадии обжатия), тоgsp > 1. При подсчете потерь напряжений, ширины раскрытия трещин и прогибов допускается принимать gsp = 1. Значения gsp приведены в Нормах проектирования.
Не следует путать gsp с допустимым отклонением p. Если p используют при назначении проектной величины предварительного напряжения, то gsp – при расчете непосредственно самих сечений.
48. Почему положение силы обжатия P не всегда совпадает с центром тяжести напрягаемой арматуры?
Усадка и ползучесть бетона вызывают не только потери напряжений в напрягаемой арматуре, но и сжимающие напряжения в ненапрягаемой арматуре ss и ss´ (рис. 22). В результате, после вторых потерь сила обжатия Р из усилия натяжения арматуры превращается в равнодействующую всех внутренних сил в сечении: Р = sspAsp - ssAs - ss´As´, а ее эксцентриситет относительно центра тяжести (ц.т.) сечения равен
еор= (sspAspysp- ssAsys+ ss´As´ys´) /P, т.е. не совпадает с ysp. Напряжения ss и ss´ в ненапрягаемой арматуре определяют по тем же формулам Норм, что и потери напряжений s8 и s9 в напрягаемой
49. Что такое приведенные сечения?
Бетон и арматура, хотя и работают совместно, но имеют разные модули упругости: при одинаковых деформациях в них возникают разные напряжения. Чтобы подсчитать их, сечения приводят к одному материалу (обычно к бетону) через коэффициент приведения a = Еs / Eb, где Еs и Еb – модули упругости арматуры и бетона (начальный). Такие сечения называют приведенными. Поясним примером.
Требуется определить напряжения в бетоне преднапряженного элемента, обжатого осевой силой Р = sspAsp, где Аsp – площадь сечения напрягаемой арматуры. После обжатия элемент упруго укорачивается на величину Dl, или eb = Dl/ l (рис. 23,а), причем вместе с бетоном укорачивается и напрягаемая арматура: Desp = eb. Усилие в ней падает на величину DР = DsspAsp = DespEsAsp.
Поскольку Desp = eb, а Еs = aЕb, то Dssp= DespEs = ebaEb = (sbp/Eb)aEb= =asbp, где sbp – установившееся напряжение в бетоне. Условие равновесия: Р – DР = Nbp, или Р = Nbp + DP, где Nbp=sbpAb - усилие, воспринимаемое бетоном, Аb – площадь бетонного сечения, DР = DsspAsp =asbpAsp. Отсюда Р = sbpАb +asbpAsp = sbpAred, где Аred =Аb + aAsp - площадь приведенного сечения. Тогда sbp = P/Ared.
Следовательно, чтобы вычислить напряжения в бетоне при обжатии, вовсе не обязательно учитывать упругое укорочение арматуры и падение в ней усилия Р - достаточно первоначальное значение Р поделить на площадь приведенного сечения.
В более сложных случаях одной площади недостаточно. Например, чтобы вычислить sbp в любой точке приведенного сечения при внецентренном обжатии (рис. 23,б) требуется знать статический момент Sred (для нахождения центра тяжести приведенного сечения) и момент инерции Jred. Тогда sbp = Р/Ared ± Peopy/Jred, где y – расстояние от центра тяжести до интересующей точки.
50. Чем отличаются стадии работы обычных и преднапряженных железобетонных элементов?
Рассмотрим работу центрально растянутого элемента (рис. 24) с обычной (а) и напрягаемой (б) арматурой. У элемента с обычной арматурой до приложения внешней нагрузки напряжения отсутствуют (если пренебречь влиянием усадки) – стадия 1. С приложением внешней силы N в бетоне и арматуре появились растягивающие напряжения (стадия 2), причем из условия совместности деформаций в арматуре напряжения в a раз больше, чем в бетоне: ebt = es; sbt = Ebeb; ss = Eses, откуда ss = sbtEs/Eb= asbt. По мере роста N бетон достигает предела прочности на растяжение (sbt =Rbt), а напряжения в арматуре составляют ss = 2aRbt, где цифра 2 учитывает удвоение, по сравнению с упругой частью, деформаций в бетоне ebt к моменту его разрыва (см. диаграмму на рис.1). Внешняя сила N на момент образования трещин (разрыва бетона) составляет Ncrc = = Nbt + Ns = RbtAb + 2aRbtAs = Rbt (Ab + 2aAs), где Аb и As – площади сечения соответственно бетона и арматуры. После образования трещин вся нагрузка воспринимается арматурой (стадия 3): N = ssAs.
У элемента с напрягаемой арматурой на стадии 1 арматура натянута и закреплена на упорах, в ней проявились первые потери (кроме потерь от быстронатекающей ползучести). Стадия 2 – натяжение отпущено, бетон обжат силой Р1 = ssp1Asp, напряжения в нем sbp1 = P1 /Ared, напряжения в арматуре уменьшились за счет быстронатекающей ползучести и упругого укорочения бетона и составили ssp1 – asbp1. Стадия 3 – проявляются вторые потери, сила обжатия уменьшается до величины Р2, напряжения в бетоне – до величины sbp2 = P2 /Ared, а напряжения в арматуре – до величины ssp2 – asbp2. Стадия 4 – приложена внешняя нагрузка N, по мере роста которой напряжения в бетоне sbp2 падают до нуля, а напряжения в арматуре растут на величину asbp2 – сила обжатия бетона Р2 погашена, элемент возвращается в исходное положение на стадии 1, но с одной существенной оговоркой: в бетоне проявились деформации усадки и ползучести, а в арматуре безвозвратно потеряна часть напряжений. Условие равновесия: N = P2 = ssp2Asp. Стадия 5 – бетон растягивается до напряжений sbt = Rbt при нагрузке Ncrc.
Коэффициент приведения арматуры к бетону расчет
СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ
БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ БЕЗ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
Concrete and reinforced concrete structures without prestressing
Дата введения 2004-03-01
1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (ГУП "НИИЖБ") Госстроя России
ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России
2 ОДОБРЕН для применения постановлением Госстроя России от 25.12.2003 N 215
Документ не применяется в связи с отказом в госрегистрации Министерства юстиции Российской Федерации (Письмо Минюста Российской Федерации от 24.01.2005 N 01/463-ВЯ). - Примечание изготовителя базы данных.
3 ВВЕДЕН ВПЕРВЫЕ
ВВЕДЕНИЕ
Настоящий Свод правил содержит рекомендации по расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений из тяжелого бетона без предварительного напряжения арматуры, которые обеспечивают выполнение обязательных требований СНиП 52-01-03 "Бетонные и железобетонные конструкции. Основные положения".
Решение вопроса о применении Свода правил при проектировании бетонных и железобетонных конструкций конкретных зданий и сооружений относится к компетенции заказчика или проектной организации. В случае если принято решение о применении настоящего Свода правил, должны быть выполнены все установленные в нем требования.
Приведенные в Своде правил единицы физических величин выражены: силы - в ньютонах (Н) или в килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - в мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм.
Свод правил разработали д-ра техн. наук А.С.Залесов, А.И.Звездов, Т.А.Мухамедиев, Е.А.Чистяков (ГУП "НИИЖБ" Госстроя России).
1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий Свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, выполненных из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного напряжения арматуры и эксплуатируемых в климатических условиях России, в среде с неагрессивной степенью воздействия, при статическом действии нагрузки.
Свод правил не распространяется на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений.
2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем Своде правил использованы ссылки на следующие нормативные документы:
СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения
СНиП 2.01.07-85* Нагрузки и воздействия
СНиП 23-01-99* Строительная климатология
ГОСТ 13015.0-2003* Конструкции и изделия бетонные и железобетонные сборные. Общие технические требования
* На территории Российской Федерации действует ГОСТ 13015-2012, здесь и далее по тексту. - Примечание изготовителя базы данных.
3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
В настоящем Своде правил использованы термины по СНиП 52-01 и другим нормативным документам, на которые имеются ссылки в тексте.
4 ОБЩИЕ УКАЗАНИЯ
4.1 ОСНОВНЫЕ ПОЛОЖЕНИЯ
4.1.1 Бетонные и железобетонные конструкции должны быть обеспечены с требуемой надежностью от возникновения всех видов предельных состояний расчетом, выбором показателей качества материалов, назначением размеров и конструированием согласно указаниям настоящего Свода правил. При этом должны быть выполнены технологические требования при изготовлении конструкций и соблюдены требования по эксплуатации зданий и сооружений, а также требования по экологии, устанавливаемые соответствующими нормативными документами.
4.1.2 Конструкции рассматривают как бетонные, если их прочность обеспечена одним только бетоном.
Бетонные элементы применяют:
а) преимущественно на сжатие при расположении продольной сжимающей силы в пределах поперечного сечения элемента;
б) в отдельных случаях в конструкциях, работающих на сжатие, при расположении продольной сжимающей силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования и когда применение бетонных конструкций целесообразно.
4.2 ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ
4.2.1 Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:
- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);
- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).
Расчеты по предельным состояниям первой группы, содержащиеся в настоящем СП, включают расчет по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.
Расчеты по предельным состояниям второй группы, содержащиеся в настоящем СП, включают расчеты по раскрытию трещин и по деформациям.
4.2.2 Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий: изготовления, транспортирования, возведения и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям.
4.2.3 Расчеты железобетонных конструкций необходимо, как правило, производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре.
Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить по методам строительной механики, как правило, с учетом физической и геометрической нелинейности работы конструкций.
4.2.4 При проектировании бетонных и железобетонных конструкций надежность конструкций устанавливают расчетом путем использования расчетных значений нагрузок и воздействий, расчетных значений характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий и сооружений.
Нормативные значения нагрузок и воздействий, коэффициентов сочетаний, коэффициентов надежности по нагрузке, коэффициентов надежности по назначению конструкций, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07.
4.2.5 При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элементов следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициента динамичности, но не ниже 1,25.
4.2.6 При расчете по прочности бетонных и железобетонных элементов на действие сжимающей продольной силы следует учитывать случайный эксцентриситет , принимаемый не менее:
1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;
1/30 высоты сечения;
Для элементов статически неопределимых конструкций значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения принимают равным значению эксцентриситета, полученного из статического расчета, но не менее .
Для элементов статически определимых конструкций эксцентриситет принимают равным сумме эксцентриситетов - из статического расчета конструкций и случайного.
5 МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
5.1 БЕТОН
Показатели качества бетона и их применение при проектировании
5.1.1 Для бетонных и железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Свода правил, следует предусматривать конструкционный тяжелый бетон средней плотности от 2200 кг/м до 2500 кг/м включительно.
5.1.2 Основными показателями качества бетона, устанавливаемыми при проектировании, являются:
а) класс бетона по прочности на сжатие В;
б) класс по прочности на осевое растяжение (назначают в случаях, когда эта характеристика имеет главенствующее значение и ее контролируют на производстве);
в) марка по морозостойкости F (назначают для конструкций, подвергаемых действию попеременного замораживания и оттаивания);
г) марка по водонепроницаемости W (назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости).
Классы бетона по прочности на сжатие В и осевое растяжение отвечают значению гарантированной прочности бетона, МПа, с обеспеченностью 0,95.
5.1.3 Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:
а) классов по прочности на сжатие:
В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;
б) классов по прочности на осевое растяжение:
0,8; 1,2; 1,6; 2,0; 2,4; 2,8; 3,2;
в) марок по морозостойкости:
F50; F75; F100; F150; F200; F300; F400; F500;
г) марок по водонепроницаемости: W2; W4; W6; W8; W10; W12.
5.1.4 Возраст бетона, отвечающий его классу по прочности на сжатие и осевое растяжение (проектный возраст), назначают при проектировании исходя из возможных реальных сроков загружения конструкций проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 сут.
Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0 и стандартами на конструкции конкретных видов.
5.1.5 Для железобетонных конструкций рекомендуется применять класс бетона по прочности на сжатие не ниже В15.
5.1.6 Марку бетона по морозостойкости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной отрицательной температуре наружного воздуха в холодный период от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75, а при расчетной температуре наружного воздуха выше минус 5 °С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.
В остальных случаях требуемые марки бетона по морозостойкости устанавливают в зависимости от назначения конструкций и условий окружающей среды по специальным указаниям.
5.1.7 Марку бетона по водонепроницаемости назначают в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды.
Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют.
Коэффициент армирования: для чего нужен и как рассчитывается
Исполнение монолитных конструкций, куда относят заливной фундамент ленточного типа, цементные стяжки, а иногда и плиты перекрытия – ответственная работа. Она требует соблюдения расхода арматуры на куб бетона, для чего и нужно знать коэффициент армирования. В частном строительстве этот параметр важен так же, как и в капитальном, поэтому мне хотелось бы напомнить, какие правила расхода арматуры существуют, и как проводится ее расчет на основе СНиП.
Что написано в СНиП
Коэффициент армирования – значение, без которого невозможны строительные работы. Важно понимать, что это процентный показатель, вычисляемый по суммарному сечению или по массе используемых материалов. Расчеты основываются на положениях СНиП 2.03.01-84, а параметры прописаны в ГОСТ 10884, где регулируются стандарты арматурной стали для ж/б конструкций.
На практике рекомендую делать расчеты только по указаниям СНиП; приблизительные оценки здесь неуместны. На результат одинаково плохо повлияет как недостаток, так и переизбыток арматурного материала. Недостаток ухудшит эксплуатационные качества конструкции и, в конечном итоге, повлияет на ее долговечность.
Попытка нашпиговать бетон арматурой «про запас» также не приведет к ожидаемому результату. Вы превысите нормативы по материалоемкости, потратите больше денег, а строительные работы обойдутся дороже, чем планировалось. Все вместе не пойдет на пользу бюджету, да и конструкция не станет намного прочнее. Более того, расчеты показывают, что в некоторых случаях прочность даже снижается, а это не тот результат, который вы бы хотели получить.
В СНиП указано, что правильный расчет коэффициента армирования железобетонных конструкций защитит конструкцию от следующих негативных процессов:
- Разрушений в процессе эксплуатации (в пределах расчетной прочности и при нормальных условиях).
- Структурных изменений ж/б конструкции, связанных с нарастанием усталости металла от статических нагрузок на постройку.
Что касается практики строительства бетонных оснований, то оптимальным будет требование использования минимум двух неразрывных каркасов. Особенность создания каркасов в частном секторе состоит в фиксации арматурных стержней не с помощью сварки, а внахлест. Такое соединение хорошо перераспределяет растягивающие и сжимающие нагрузки и одновременно получается более качественным.
Сварочное соединение оправдывает себя в промышленном и другом капитальном строительстве. Для частных построек используют стержни меньшего диаметра, и сварка нередко просто прожигает их, снижая качество каркаса в целом.
Как рассчитать
Бетон не становится железобетоном просто из-за наличия внутри некоторого количества металлических стержней. Если строители погружают в опалубку приблизительно собранный каркас, заливают его раствором, а потом называют изделие железобетоном, это не всегда соответствует истине.
Для ж/б изделий существует понятие минимального процента армирования. Если в вашем фундаменте процент включенных арматурных деталей меньше необходимого, то основание по параметрам будет отнесено не к ж/б, а к бетонным изделиям.
В общем случае, чтобы вычислить минимальный процент (или коэффициент), суммарное сечение арматурных стержней делят на сечение бетонной массы, которую предполагается усиливать. На практике процент армирования фундамента, балки, стенового каркаса или колонны намного удобнее определять следующим способом:
- Массу каркаса делят на массу бетона в изделии.
- Полученное число переводят в проценты: умножают его на 100.
Для чего нужны предельные значения коэффициента
Минимальный процент усиления сообщает о том, каким будет предельно допустимое значение, после которого возможность разрушения фундамента или стены резко возрастает. В любом случае, если процент опускается ниже 0,05%, речь будет идти о частичном усилении бетонной конструкции, и назвать ее ЖБИ уже нельзя.
Минимальный показатель может изменяться в определенных пределах, что связано с особенностями конструкции и распределения в ней нагрузок. Возможны следующие варианты:
- В перекрывающих плитах и перемычках над оконными и дверными проемами (нагрузки формируют изгиб в плоскости), минимальный коэффициент считают как 0,05% для бетонов всех марок.
- Для вертикальной стеновой арматуры имеет значение длина конструкции, толщина монолита и марка бетона. Усиление 0,05-0,2 считают для бетонов по класс В15 включительно, коэффициент 0,1-0,25 – для бетонов классов с В20 по В22,5.
Поскольку переизбыток металла в бетоне ухудшит технические характеристики конструкции, существует верхний предел, ограничивающий использование арматуры. Нормативы максимального коэффициента (независимо от марки бетона) выглядят следующим образом:
- Изделие с колоннами. Процент вхождения арматуры не выше 5%.
- Остальные виды изделий. Процент армирования не выше 4%.
Также удельный вес арматурных стержней в сечении бетона меняют в следующих случаях:
- Коэффициент армирования снижают при увеличении слоя бетона.
- Коэффициент увеличивают, если предполагается использование стержней большого сечения.
Для упрощения расчетов существуют таблицы, связывающие эти параметры. Отдельно рассчитывается величина защитного слоя бетона, то есть, расстояние от каркаса до поверхности изделия. Для большинства конструкций она находится в пределах от 3 (сборный ж/б) до 7 см (монолитные фундаменты).
О проверке минимального процента армирования в следующем видео:
Коротко о главном
В частном строительстве регулярно используются монолитные конструкции. Для их изготовления применяют цементный раствор, армированный металлическим каркасом. Чтобы изделие получилось прочным и долговечным, проводят расчет его параметров, в том числе и коэффициента армирования.
Показатель позволяет определить минимально необходимое количество металлической арматуры, диаметр металлических стержней, подобрать расстояние между арматурным каркасом и поверхностью бетона. Так как на прочность изделия одинаково плохо влияет как недостаток, так и избыток арматуры, существуют минимальные и максимальные значения коэффициента.
Напишите в комментариях, как думаете – стоит ли использовать стержни большего диаметра, чтобы создать повышенный запас прочности?
СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003 (с Изменениями N 1, 2, 3)
, -
расчетные сопротивления бетона осевому растяжению для предельных состояний соответственно первой и второй групп;
расчетное сопротивление бетона смятию;
передаточная прочность бетона;
расчетное сопротивление сцепления арматуры с бетоном;
расчетные сопротивления арматуры растяжению для предельных состояний соответственно первой и второй групп;
расчетное сопротивление поперечной арматуры растяжению;
расчетное сопротивление арматуры сжатию для предельных состояний первой группы;
начальный модуль упругости бетона при сжатии и растяжении;
-
приведенный модуль деформации сжатого бетона;
модуль упругости арматуры;
-
приведенный модуль деформации арматуры, расположенной в растянутой зоне элемента с трещинами;
предельные относительные деформации бетона соответственно при равномерном осевом сжатии и осевом растяжении;
относительные деформации арматуры при напряжении, равном ;
относительные деформации усадки бетона;
коэффициент ползучести бетона;
отношение соответствующих модулей упругости арматуры и бетона .
Характеристики положения продольной арматуры в поперечном сечении элемента
обозначение продольной арматуры:
а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в растянутой зоне;
б) при полностью сжатом от действия внешней нагрузки сечении - расположенной у менее сжатой грани сечения;
в) при полностью растянутом от действия внешней нагрузки сечении:
для внецентренно растянутых элементов - расположенной у более растянутой грани сечения;
для центрально-растянутых элементов - всей в поперечном сечении элемента;
обозначение продольной арматуры:
а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в сжатой зоне;
б) при полностью сжатом от действия внешней нагрузки сечении - расположенной у более сжатой грани сечения;
в) при полностью растянутом от действия внешней нагрузки сечении внецентренно растянутых элементов - расположенной у менее растянутой грани сечения.
Геометрические характеристики
ширина прямоугольного сечения; ширина ребра таврового и двутаврового сечений;
ширина полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах;
высота прямоугольного, таврового и двутаврового сечений;
высота полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах;
расстояние от равнодействующей усилий в арматуре соответственно и до ближайшей грани сечения;
рабочая высота сечения, равная соответственно и ;
высота сжатой зоны бетона;
относительная высота сжатой зоны бетона, равная ;
расстояние между хомутами, измеренное по длине элемента;
эксцентриситет продольной силы относительно центра тяжести приведенного сечения, определяемый с учетом указаний 7.1.7 и 8.1.7;
расстояния от точки приложения продольной силы до равнодействующей усилий в арматуре соответственно и ;
эксцентриситет усилия предварительного обжатия относительно центра тяжести приведенного сечения;
расстояние от нейтральной оси до точки приложения усилия предварительного обжатия с учетом изгибающего момента от внешней нагрузки;
расстояние от точки приложения усилия предварительного обжатия с учетом изгибающего момента от внешней нагрузки до центра тяжести растянутой или наименее сжатой арматуры;
длина зоны анкеровки;
длина зоны передачи предварительного напряжения в арматуре на бетон;
расчетная длина элемента, подвергающегося действию сжимающей продольной силы;
радиус инерции поперечного сечения элемента относительно центра тяжести сечения;
номинальный диаметр стержней соответственно продольной и поперечной арматуры;
площади сечения арматуры соответственно и ;
площадь сечения хомутов, расположенных в одной нормальной к продольной оси элемента плоскости, пересекающей наклонное сечение;
коэффициент армирования, определяемый как отношение площади сечения арматуры к площади поперечного сечения элемента без учета свесов сжатых и растянутых полок;
площадь всего бетона в поперечном сечении;
площадь сечения бетона сжатой зоны;
площадь сечения бетона растянутой зоны;
площадь приведенного сечения элемента;
площадь смятия бетона;
момент инерции сечения всего бетона относительно центра тяжести сечения элемента;
момент инерции приведенного сечения элемента относительно его центра тяжести;
момент сопротивления сечения элемента для крайнего растянутого волокна.
Характеристики предварительно напряженного элемента
усилие предварительного обжатия с учетом потерь предварительного напряжения в арматуре, соответствующих рассматриваемой стадии работы элемента;
усилие в напрягаемой арматуре с учетом соответственно первых и всех потерь предварительного напряжения;
предварительное напряжение в напрягаемой арматуре с учетом потерь предварительного напряжения в арматуре, соответствующих рассматриваемой стадии работы элемента;
потери предварительного напряжения в арматуре;
сжимающие напряжения в бетоне в стадии предварительного обжатия с учетом потерь предварительного напряжения в арматуре.
Читайте также: