Коэффициент ползучести бетона это
Учитывать ли ползучесть в ЖБ
Ну если ведется упругий расчет в МКЭ, то программе для получения усилий в элементах, требуется соотношение жесткостей, а не их абсолютная величина. Поэтому пропорциональное уменьшение жесткости элементов в 1+(коэффициент ползучести) раз, в принципе, не имеет большого смысла.
В общем случае, если правильно понимаю, при помощи ползучести выполняется (может быть слегка неправильно) расчёт на деформации в том числе, учитывается и ползучесть __________________Велика Россия, а колонну поставить некуда
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
Нашёл старые рекомендации НИИЖБ, рекомендующие при упругом расчёте считать итерациями и ползучесть учитывать при определении усилий и деформаций изменяя жёсткость участков стрежней.
Рекомендации по учету ползучести и усадки бетона при расчете бетонных и железобетонных конструкций НИИЖБ 1988
9.1 . Так как в рассматриваемой системе имеют место трещинообразование и ползучесть, то жесткости ее элементов [а следовательно, и перемещения (95)] зависят от величины внутренних усилий и характера изменения их за промежуток времени t-to. 9.2. Поскольку жесткости оказываются в общем случае переменными по длине стержней, из которых состоит система, то для вычисления перемещений стержни, как правило, разбиваются на участки, в пределах которых жесткости можно считать постоянными. |
"Безвыходных ситуаций не бывает" барон Мюнгхаузен Тут и тут описан опыт с учетом ползучести. Так кто-нибудь учитывает ползучесть при расчете армирования плоских плит на прогиб и какую величину закладываете?
Вопрос особенно актуален при использование МКЭ комплексов. Согласно графиков Еврокода величина очень сильно зависит от толщин элемента. Чем тоньше элемент, тем ползучесть выше. Кроме того подрячик всегда стремится пораньше снять опалубку с еще не полностью набравшего прочность перекрытия, а это тоже очень значительно влияет. Есть примеры со сверхнормативным нарастанием прогибов на консолях к моменту окончания строительства. Есть примеры со сверхнормативным нарастанием прогибов на консолях к моменту окончания строительства. Поделитесь? Поделитесь? О таких вещах все стыдливо умалчивают.
Даже когда аквапарк в 2002 году упал через 3 года после строительства, причин не знаем до сих пор. Последний раз редактировалось aProkurat, 29.01.2021 в 15:01 .
до сих пор не понял
Замкадская степь, аул СПбПо умолчанию да.
На практике зависит от:
- того на сколько жесткая схема (в смысле статической неопределимости),
- отношения пролета плиты перекрытия к ее толщине,
- опыта и требований эксперта,
- требований заказчика,
- качества строительства,
- вашей смелости
- и того можете ли вы позволить себе хорошего адвоката
Ищите литературу. Кодыша почитайте. Пробуйте сами. Делайте выводы.
У вас появился шанс узнать насколько глубока кроличья нора
Коэффициент ползучести бетона это
Рекомендации
по учету ползучести и усадки бетона при расчете бетонных и железобетонных конструкций
Рекомендованы к изданию решением секции конструкций Ученого совета НИИЖБа.
Содержат методику расчета железобетонных конструкций с учетом ползучести и усадки бетона, условий изготовления, а также сроков нагружения конструкций.
Изложены основные положения расчета, приведены значения деформаций ползучести и усадки тяжелых бетонов и другие характеристики, необходимые для расчета. Даны методики определения потерь предварительного напряжения от усадки и ползучести бетона, жесткостей и перемещений изгибаемых и сжатых элементов, величин критических сил для сжатых стержней, а также методика расчета статически неопределимых систем.
Для инженерно-технических работников проектных и производственных организаций, научных работников, а также студентов строительных вузов.
ПРЕДИСЛОВИЕ
Настоящие Рекомендации содержат положения по учету ползучести и усадки бетона при проектировании бетонных и железобетонных стержневых элементов и составленных из них систем, изготовленных из тяжелого бетона и применяемых в промышленном, гражданском, гидротехническом, транспортном и других областях строительства.
Целью Рекомендаций является внедрение в практику проектирования методов расчета, позволяющих более точно учитывать влияние деформаций ползучести и усадки бетона на напряженно-деформированное состояние бетонных и железобетонных конструкций. Использование в расчетном аппарате статистически обоснованных характеристик бетона, принимаемых в зависимости от состава бетона, его возраста в момент нагружения, длительности действия нагрузки, условий окружающей среды в стадии эксплуатации конструкции и других факторов, позволяет более правильно проектировать бетонные и железобетонные конструкции.
Рекомендации предусматривают возможность применения расчетного аппарата также и при отсутствии в полном объеме исходных данных о составе бетона и некоторых других факторах.
Основными характеристиками бетона, учитываемыми в расчетах, являются прочность и модуль упругости бетона в момент приложения силового или температурно-влажностного воздействия, мера ползучести (характеристика ползучести) бетона, деформация усадки бетона и др.
Рекомендации состоят из 12-ти разделов: в разделах 1-3 излагаются основные положения и предпосылки методик расчета, а также приводятся значения прочностных и деформационных характеристик бетона; в разделах 4-9 содержится изложение методов расчета бетонных и железобетонных конструкций с учетом ползучести и усадки в предположении линейной зависимости между напряжениями и деформациями; в разделах 10-12 приведены методики расчета с учетом нелинейного деформирования бетона при кратковременном и длительном действии нагрузки.
Рекомендации составлены на основе результатов исследований, проведенных в СССР и за рубежом.
Рекомендации разработаны НИИЖБ Госстроя СССР (д-р техн. наук Р.Л.Серых, канд. техн. наук А.В.Яшин), ЦНИИС Минтрансстроя (кандидаты техн. наук Е.Н.Щербаков, Н.Г.Хубова), ВЗИСИ Минвуза РСФСР (д-р техн. наук В.М.Бондаренко, кандидаты техн. наук В.Г.Назаренко, И.М.Сперанский), ОИСИ Минвуза УССР (д-р техн. наук И.Е.Прокопович, кандидаты техн. наук М.В.Штейнберг, А.Н.Орлов), ЛПИ имени М.И.Калинина Минвуза РСФСР (д-р техн. наук П.И.Васильев); НИИСК Госстроя СССР (д-р техн. наук А.Б.Голышев, кандидаты техн. наук В.Я.Бачинский, В.А.Критов).
В разработке отдельных положений Рекомендаций приняли также участие ИСМиС АН ГССР (д-ра техн. наук З.Н.Цилосани, Г.В.Кизирия); ВЗПИ Минвуза СССР (д-р техн. наук Ю.В.Зайцев), ЦНИИС Минтрансстроя (инж. В.Л.Хасин); ДИСИ Минвуза УССР (канд. техн. наук В.А.Пахомов), КАДИ Минвуза УССР (д-р техн. наук Я.Д.Лившиц, ОИСИ Минвуза УССР (кандидаты техн. наук В.И.Барановский, М.М.Застава, инж. М.М.Бакирова), КПИ Минвуза МССР (д-р техн. наук Е.Н.Львовский, инж. Ф.П.Сырбу), ВЗИСИ Минвуза РСФСР (кандидаты техн. наук В.В.Костюков, А.Н.Курбанов, Е.П.Михлин); Ленинградский ИСИ Минвуза РСФСР (канд. техн. наук А.И.Филиппов); ЦНИИпроект Госстроя СССР (канд. техн. наук С.В.Бондаренко).
1. ОСНОВНЫЕ РАСЧЕТНЫЕ ПОЛОЖЕНИЯ
1.1. Настоящие Рекомендации содержат указания по учету влияния деформаций ползучести и усадки при расчете бетонных и железобетонных конструкций из тяжелого бетона на цементном вяжущем, выполняемых как без предварительного натяжения арматуры, так и с предварительным натяжением, и предназначенных для эксплуатации в условиях воздействия температур не выше плюс 50 °С и не ниже минус 40 °С и относительной влажности воздуха в пределах от 30 до 100%.
1.2. Материалы Рекомендаций основаны на обширных результатах статистической обработки опытных данных о кратковременном и длительном деформировании бетона, а также экспериментально проверенных теоретических решениях задач теории ползучести. Рекомендации позволяют более точно оценивать влияние ползучести и усадки бетона на несущую способность и перемещения, создают возможности для проектирования более рациональных и экономичных бетонных и железобетонных конструкций.
Для упрощения расчетов помещены таблицы, в которых промежуточные значения определяют по линейной интерполяции.
1.3. Рекомендации распространяются на расчет стержневых элементов бетонных и железобетонных конструкций, а также конструкций, рассчитываемых аналогичными способами, при действии нагрузок и (или) вынужденных деформаций (температурные и влажностные воздействия, смещения опор и т.д.).
Рекомендации не распространяются на расчет массивных конструкций гидротехнических и других сооружений. При наличии данных о величинах деформации ползучести и усадки рекомендации могут применяться и для расчета конструкций из других видов бетона (на пористых заполнителях, на специальных вяжущих и т.п.).
1.4. При определении внутренних усилий и перемещений расчетные температура и влажность среды устанавливаются заданием на проектирование. При отсутствии в задании необходимых указаний температура и влажность среды определяются по отраслевым техническим условиям.
1.6. Численные значения характеристик бетона, приведенные в настоящих Рекомендациях, предназначены только для проектирования. Характеристики арматуры, а также другие данные, не нашедшие отражения в Рекомендациях, следует принимать по соответствующим нормативным документам.
1.7. Усилия в статически неопределимых железобетонных конструкциях от нагрузок и вынужденных деформаций при расчете по предельным состояниям первой и второй групп следует, как правило, определять с учетом неупругих деформаций бетона и арматуры, с учетом в необходимых случаях нелинейности деформаций при кратковременном нагружении и деформаций ползучести, наличия трещин, а также деформированного состояния как отдельных элементов, так и конструкций в целом.
1.8. Усилия, возникающие при любом изменении температуры, определяют в предположении однократного и стационарного во времени характера этих температурных воздействий.
1.9. Вынужденные деформации, связанные с неравномерной осадкой опор в статически неопределимых системах, считаются мгновенно зафиксированными или монотонно изменяющимися по законам, регламентированным соответствующими документами или полученным по результатам экспериментальных или натурных наблюдений.
1.10. При расчете конструкций, возводимых методом последовательного наложения связей после частичного или полного загружения, перемещения в направлении этих связей, сформировавшиеся при работе по разрезной схеме, рассматривают как вынужденные перемещения в неразрезной системе, сохраняющиеся после замыкания связей.
1.11. Если статически неопределимая система состоит из конструктивных элементов, бетон которых существенно различается по возрасту, составу или другим показателям, то в расчет системы следует вводить элементы с соответствующими жесткостями, а также параметрами ползучести и усадки.
2. ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ БЕТОНА
2.1. Вводимые в расчет класс бетона по прочности на сжатие и нормативное значение призменной прочности имеют обеспеченность, равную 0,95, и принимаются согласно СНиП 2.03.01-84 для возраста бетона =28 сут. Значения модуля упругости , предельные значения меры ползучести и деформации усадки , определяемые по формулам (1), (3) и (4) или по табл.2 и 4, принимаются среднестатистическими с обеспеченностью 0,5 и соответствуют базовым условиям, принятым по ГОСТ 24452-80 и ГОСТ 24544-81 с изм.
2.2. Для учета в расчетах влияния отклонений фактических условий изготовления, загружения и эксплуатации железобетонных элементов от базовых условий (возраста бетона в момент загружения или же начала его высыхания, размеров поперечного сечения элемента, температурно-влажностного режима окружающей среды, тепловлажностной обработки) числовые значения деформационных характеристик , , , полученные согласно п.2.1, умножают на коэффициенты, приведенные в табл.5-7 и в примечаниях к табл.2 и 4.
2.3. Значение начального модуля упругости бетона при известных характеристиках состава бетонной смеси и ее составляющих определяют по формуле
СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003 (с Изменениями N 1, 2, 3)
, -
расчетные сопротивления бетона осевому растяжению для предельных состояний соответственно первой и второй групп;
расчетное сопротивление бетона смятию;
передаточная прочность бетона;
расчетное сопротивление сцепления арматуры с бетоном;
расчетные сопротивления арматуры растяжению для предельных состояний соответственно первой и второй групп;
расчетное сопротивление поперечной арматуры растяжению;
расчетное сопротивление арматуры сжатию для предельных состояний первой группы;
начальный модуль упругости бетона при сжатии и растяжении;
-
приведенный модуль деформации сжатого бетона;
модуль упругости арматуры;
-
приведенный модуль деформации арматуры, расположенной в растянутой зоне элемента с трещинами;
предельные относительные деформации бетона соответственно при равномерном осевом сжатии и осевом растяжении;
относительные деформации арматуры при напряжении, равном ;
относительные деформации усадки бетона;
коэффициент ползучести бетона;
отношение соответствующих модулей упругости арматуры и бетона .
Характеристики положения продольной арматуры в поперечном сечении элемента
обозначение продольной арматуры:
а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в растянутой зоне;
б) при полностью сжатом от действия внешней нагрузки сечении - расположенной у менее сжатой грани сечения;
в) при полностью растянутом от действия внешней нагрузки сечении:
для внецентренно растянутых элементов - расположенной у более растянутой грани сечения;
для центрально-растянутых элементов - всей в поперечном сечении элемента;
обозначение продольной арматуры:
а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения - расположенной в сжатой зоне;
б) при полностью сжатом от действия внешней нагрузки сечении - расположенной у более сжатой грани сечения;
в) при полностью растянутом от действия внешней нагрузки сечении внецентренно растянутых элементов - расположенной у менее растянутой грани сечения.
Геометрические характеристики
ширина прямоугольного сечения; ширина ребра таврового и двутаврового сечений;
ширина полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах;
высота прямоугольного, таврового и двутаврового сечений;
высота полки таврового и двутаврового сечений соответственно в растянутой и сжатой зонах;
расстояние от равнодействующей усилий в арматуре соответственно и до ближайшей грани сечения;
рабочая высота сечения, равная соответственно и ;
высота сжатой зоны бетона;
относительная высота сжатой зоны бетона, равная ;
расстояние между хомутами, измеренное по длине элемента;
эксцентриситет продольной силы относительно центра тяжести приведенного сечения, определяемый с учетом указаний 7.1.7 и 8.1.7;
расстояния от точки приложения продольной силы до равнодействующей усилий в арматуре соответственно и ;
эксцентриситет усилия предварительного обжатия относительно центра тяжести приведенного сечения;
расстояние от нейтральной оси до точки приложения усилия предварительного обжатия с учетом изгибающего момента от внешней нагрузки;
расстояние от точки приложения усилия предварительного обжатия с учетом изгибающего момента от внешней нагрузки до центра тяжести растянутой или наименее сжатой арматуры;
длина зоны анкеровки;
длина зоны передачи предварительного напряжения в арматуре на бетон;
расчетная длина элемента, подвергающегося действию сжимающей продольной силы;
радиус инерции поперечного сечения элемента относительно центра тяжести сечения;
номинальный диаметр стержней соответственно продольной и поперечной арматуры;
площади сечения арматуры соответственно и ;
площадь сечения хомутов, расположенных в одной нормальной к продольной оси элемента плоскости, пересекающей наклонное сечение;
коэффициент армирования, определяемый как отношение площади сечения арматуры к площади поперечного сечения элемента без учета свесов сжатых и растянутых полок;
площадь всего бетона в поперечном сечении;
площадь сечения бетона сжатой зоны;
площадь сечения бетона растянутой зоны;
площадь приведенного сечения элемента;
площадь смятия бетона;
момент инерции сечения всего бетона относительно центра тяжести сечения элемента;
момент инерции приведенного сечения элемента относительно его центра тяжести;
момент сопротивления сечения элемента для крайнего растянутого волокна.
Характеристики предварительно напряженного элемента
усилие предварительного обжатия с учетом потерь предварительного напряжения в арматуре, соответствующих рассматриваемой стадии работы элемента;
усилие в напрягаемой арматуре с учетом соответственно первых и всех потерь предварительного напряжения;
предварительное напряжение в напрягаемой арматуре с учетом потерь предварительного напряжения в арматуре, соответствующих рассматриваемой стадии работы элемента;
потери предварительного напряжения в арматуре;
сжимающие напряжения в бетоне в стадии предварительного обжатия с учетом потерь предварительного напряжения в арматуре.
Модуль упругости бетона
При расчетах бетонных и железобетонных конструкций по второй группе предельных состояний, в частности при определении прогибов, необходимо знать модуль упругости E (модуль Юнга) бетона при сжатии. При этом следует различать начальный Eb и приведенный Eb1 модули упругости.
Факторы, влияющие на значение расчетного модуля упругости
Более подробно сущность модуля упругости, предела пропорциональности, предела прочности, нормальных напряжений, деформаций и других понятий рассматривается отдельно. Здесь лишь отметим, что для материалов, у которых предел пропорциональности незначительно меньше предела текучести, можно использовать линейную деформационную модель. Т.е. предполагать деформации прямо пропорциональными нормальным напряжениям.
Примером таких материалов являются стали различных марок. А вот бетон к таким материалам не относится. Более того, у бетона нет ярко выраженного предела пропорциональности и предела текучести. Диаграмма напряжений бетона при постепенном загружении выглядит приблизительно так:
Рисунок 324.1
Однако это далеко не единственная из возможных диаграмм напряжений бетона, так как на значение деформаций ε будут влиять не только нормальные напряжения σ, возникающие в поперечных сечениях, но и множество других факторов:
1. Класс бетона
Начальный модуль упругости бетона зависит от класса бетона. Значение начального модуля упругости можно определить по следующей таблице:
Таблица 1. Начальные модули упругости бетона (согласно СП 52-101-2003)
2. Время приложения нагрузки
При кратковременном действии нагрузки деформации бетона почти прямо пропорциональны напряжениям, кроме того такие деформации остаются упругими. При расчетах на кратковременное действие нагрузки (до 1-2 часов) значение приведенного модуля упругости на участках без трещин определяется по формуле:
где φb1 = 0.85 - для тяжелых, мелкозернистых и легких бетонов на плотном мелком заполнителе; = 0.7 - для поризованных и легких бетонов на пористом мелком заполнителе.
При длительном действии нагрузки того же значения, деформации начинают увеличиваться до некоторого предела, например при σ = Rb - до точки 1 на диаграмме напряжений. После снятия нагрузки пластические деформации εпл останутся (потому они пластическими и называются), а при повторном загружении до указанного предела деформации будут прямо пропорциональны напряжениям. Процесс нарастания пластических деформаций с течением времени при постоянных нормальных напряжениях называется ползучестью бетона.
Так как при длительном действии нагрузки диаграмма напряжений стремится к показанной на рисунке 324.1, то при расчетах необходимо учитывать нелинейность изменения деформаций при линейно изменяющихся напряжениях. К тому же в изгибаемых элементах нелинейному изменению деформаций препятствует сам материал. Напомню, нормальные напряжения в поперечных сечениях изгибаемых элементов прямо пропорциональны расстоянию от центра тяжести сечения, через который проходит нейтральная линия, до рассматриваемой точки. Таким образом различные слои бетона, работающие совместно, приводят к частичному перераспределению деформаций по высоте элемента, при этом перераспределенную эпюру деформаций можно условно рассматривать как линейную:
Рисунок 324.2
На рисунке 324.2 показана некоторая высота сжатой зоны сечения у, при которой нормальные напряжения σ будут прямо пропорциональны расстоянию от центра тяжести до рассматриваемой точки, это соответствует работе бетона в области условно упругих деформаций. При этом изменение деформаций можно рассматривать по зависимости, показанной на рисунке 324.2.а) или 324.2.б). Часто расчетами на прочность допускается наличие в сжатой области пластического шарнира, при котором изменяется эпюра напряжений и соответственно увеличивается значение деформаций:
Рисунок 324.3
На основании этого для упрощения расчетов обычно принимается двухлинейная (рис. 324.3. а) или трехлинейная (рис. 324.3.б) диаграмма состояния сжатого бетона. Согласно СП 52.101.2003 трехлинейная диаграмма выглядит так:
Рисунок 324.4
Еb1 - при кратковременном действии нагрузки принимается равным Eb, а при длительном действии нагрузки определяется по следующей формуле:
где φb,cr - коэффициент ползучести бетона, определяемый в зависимости от класса бетона и влажности окружающей среды. Таким образом учитывается третий фактор, влияющий на модуль упругости бетона:
3. Влажность воздуха
Значение коэффициента ползучести определяется по следующей таблице:
Таблица 2. Коэффициенты ползучести бетона
а значения деформаций εbo и εb2 при необходимости (если нормальные напряжения больше 0.6Rb,n) определяются по таблице 3:
Таблица 3. Относительные деформации бетона (согласно СП 52-101.2003)
4. На значение модуля упругости бетона также влияют температура окружающей среды и интенсивность радиоактивного излучения.
Значение начальных модулей упругости, приведенных в таблице 1, соответствует температуре окружающей среды +20±5 о С и нормальному радиационному фону. При изменении температуры в пределах ±20 от указанного значения влияние температуры на модуль упругости можно не учитывать. А при больших изменениях температуры следует учитывать еще и температурные деформации бетона. В целом уменьшение температуры приводит к увеличению модуля упругости, но и к повышению хрупкости материала, а увеличение температуры - к уменьшению модуля упругости и к увеличению пластичности материала.
А теперь попробуем выяснить, как все эти теоретические цифры можно применить на практике.
Определение значения модуля упругости
Имеется железобетонная прямоугольная плита перекрытия - шарнирно опертая бесконсольная балка размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (начальный модуль упругости Еb = 245000 кгс/см 2 ; Rb,ser (Rb,n) = 112 кгс/см 2 , Rb = 85 кгс/см 2 ); растянутая арматура класса А400 (Es= 2·10 6 кгс/см 2 ) с площадью поперечного сечения As = 7.69 cм 2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кг/см, сумма постоянных и длительных нагрузок ql = 6.5 кгс/см
1. Сначала выясним, какими будут параметры сечения при расчетном модуле упругости Еb1. Согласно формулы (324.3) и таблицы 2, при классе бетона В15 и при влажности 40-75%:
Eb1 = 245000/(1 + 3.4) = 55681 кгс/см 2
2. Тогда высоту сжатой части приведенного сечения посредине балки можно найти, решив следующее уравнение:
у 3 = 3As(ho - y) 2 Es/bEb1 (321.2.4)
Решение этого уравнения для рассматриваемой плиты даст уl/2 = 8.61 см.
Тогда приведенный момент сопротивления при такой высоте сжатой зоны сечения составит:
W = 2by 2 /3 = 2·100·8.61 2 /3 = 4942.14 см 3
3. Определим значение максимальных нормальных напряжений. Так как увеличение деформаций следует учитывать только при действии постоянных и длительных нагрузок, то значение момента от таких нагрузок составит:
σ = M/W = qll 2 /8W = 6.5·560 2 /(8·4942.14) = 51.56 кгс/см 2 < 0.6Rb,n = 0.6·112 = 67.2 кгс/см 2 (321.3.1)
Это означает, что для дальнейших расчетов плиты на действие длительных нагрузок можно использовать полученное значение модуля упругости бетона без каких-либо дополнительных поправок.
4. Расчетный момент инерции составит
Ip = W·y = 4942.14·8.61 = 42551.8 см 4 (321.5)
5. Значение прогиба при действии постоянных и длительных нагрузок составит
f = k5ql 4 /384Eb1Ip = 0.93·5·6.5·560 4 /(384·55681·42551.8) = 3.27 см (321.6)
где k = 0.93 - коэффициент, учитывающий изменение высоты сжатой зоны поперечного сечения по длине балки. На первый взгляд это кажется странным, ведь когда мы определяли прогиб по начальному модулю упругости бетона и использовали коэффициент k = 0.86, то пригиб составлял 3.065 см, т.е. при использовании коэффициента k = 0.93 прогиб был бы даже больше и составлял 3.31 см. Однако ничего странного в этом нет. Объясню, почему.
При определении прогиба по начальному модулю упругости мы искусственно занизили значение высоты сжатой зоны из-за нарастания пластических деформаций в результате превышения расчетного сопротивления. В данном же случае уменьшение модуля упругости бетона означает увеличение высоты сжатой зоны, а кроме того, значение нормальных напряжений, как показал расчет, не превышает 0.6Rb,n.
В связи с этим разницу при определении приблизительного прогиба по начальному и расчетному модулям упругости бетона можно считать не существенной. Т.е. при определении приблизительного значения прогиба расчет можно выполнять как по начальному значению модуля упругости бетона, так и с учетом его изменения в результате действия длительной нагрузки. Вот в в принципе и все.
На этом пока все.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).
Коэффициент ползучести бетона это
Методы определения деформаций усадки и ползучести
Concretes. Methods of shrinkage and creep flow determination
Дата введения 2021-06-01
Предисловие
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 РАЗРАБОТАН Структурным подразделением АО "НИЦ "Строительство" Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) при участии АО "ВНИИГ им.Б.Е.Веденеева"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2020 г. N 134-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
ЗАО "Национальный орган по стандартизации и метрологии" Республики Армения
Госстандарт Республики Беларусь
4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 декабря 2020 г. N 1347-ст межгосударственный стандарт ГОСТ 24544-2020 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2021 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"
1 Область применения
Настоящий стандарт распространяется на все виды цементных, а также силикатных бетонов, применяемых во всех областях строительства, и устанавливает методы определения деформаций усадки и ползучести.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 310.2 Цементы. Методы определения тонкости помола
ГОСТ 310.4 Цементы. Методы определения предела прочности при изгибе и сжатии
ГОСТ 5382 Цементы и материалы цементного производства. Методы химического анализа
ГОСТ 5632 Нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки
ГОСТ 8269.0 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний
ГОСТ 8735 Песок для строительных работ. Методы испытаний
ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний
ГОСТ 10180 Методы определения прочности по контрольным образцам
ГОСТ 10181 Смеси бетонные. Методы испытаний
ГОСТ 10354 Пленка полиэтиленовая. Технические условия
ГОСТ 12730.1 Бетоны. Методы определения плотности
ГОСТ 12730.2 Бетоны. Метод определения влажности
ГОСТ 23683 Парафины нефтяные твердые. Технические условия
ГОСТ 24452 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
ГОСТ 31108 Цементы общестроительные. Технические условия
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 линейная относительная деформация усадки : Относительное уменьшение линейных размеров ненагруженного образца во времени, вызванное гидратацией цемента (контракцией), уменьшением влажности цементного камня и его карбонизацией.
3.2 линейная относительная деформация усадки при нагреве : Относительное уменьшение линейных размеров ненагруженного образца, вызванное испарением из него влаги при нагреве.
3.3 линейная относительная деформация температурного расширения : Относительное увеличение размеров образца, вызванное температурным расширением при нагреве.
3.4 линейная относительная температурно-усадочная деформация : Относительное изменение линейных размеров образца, вызванное совместным действием температуры и усадки бетона.
3.5 линейная относительная деформация ползучести : Относительное изменение линейных размеров образца во времени, вызванное действием постоянной внешней нагрузки за вычетом деформаций усадки.
4 Методы определения деформаций усадки и ползучести при сжатии
В настоящем разделе и приложениях А, Б, В и Г приведены методы испытаний при стандартном температурном режиме для определения деформаций усадки и ползучести путем измерения их в направлении продольной и поперечной осей (при необходимости такой задачи) незагруженного образца и образца, загруженного постоянной по величине осевой сжимающей нагрузкой.
Методы определения деформаций температурной усадки и ползучести бетона при нагреве приведены в приложении Д.
Методика определения деформаций ползучести при изгибе (упрощенная методика испытания на ползучесть) и вычисление основных деформационных характеристик приведены в приложении Е.
4.1 Испытательные стенды, приборы, измерительное оборудование и материалы
4.1.1 Оборудование и приборы для проведения испытаний должны соответствовать требованиям настоящего стандарта, быть повереными* и аттестоваными* в установленном порядке.
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.
4.1.2 Для определения деформаций усадки применяют устройства, схемы которых показаны на рисунках 1 и 2. Устройство, схема которого приведена на рисунке 1, предназначено для измерения деформаций усадки образцов с поперечным сечением размерами 40х40 мм.
Образцы с размерами поперечного сечения более 40х40 мм испытывают с приклеенными по торцам металлическими пластинами согласно 4.3.2 (рисунок 2) без дополнительных испытательных стендов.
4.1.3 Для определения деформаций ползучести применяют пневмогидравлические, пружинно-гидравлические, рычажные или пружинные испытательные устройства. В установку допускается устанавливать одновременно до трех образцов вертикально друг на друга (в виде колонны), как показано на рисунке 3.
1 - стойка; 2 - кронштейн; 3 - конусообразный выступ; 4 - нижняя опора; 5 - индикатор; 6 - образец; 7 - репер; а - размер стороны поперечного сечения образца; H - высота образца; - база измерений.
Рисунок 1 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения 40х40 мм
1 - индикатор часового типа; 2 - рамка для крепления индикаторов; 3 - качающаяся штанга; 4 - образец; 5 - металлические пластинки; - база измерения
Рисунок 2 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения более 40х40 мм
4.1.4 При установке нескольких образцов в колонну соосность передачи нагрузки обеспечивается через металлические шарики, устанавливаемые в специальные центрированные выточки в стальных пластинах в соответствии с 4.1.7. Для предотвращения потери устойчивости колонны необходимо использовать дополнительные страховочные устройства от выстреливания шарика. Схема такого устройства приведена на рисунке 3 (справа). Страховочные устройства не должны препятствовать свободному деформированию образцов.
1 - динамометр; 2 - гидравлический домкрат; 3 - стоика (стержень с резьбой); 4 - стальной шар; 5 - стальная пластина, приклеиваемая к образцу; 6 - бетонные образцы; 7 - пружины; 8 - стальная опорная плита; 9 - гайки; 10 - стальные страховочные элементы; - база измерения
Рисунок 3 - Схема устройства установки для определения деформаций ползучести при испытании нескольких образцов в колонне
4.1.5 Принципиальная схема устройства пружинной установки на три образца приведена на рисунке 3 (слева). Схемы пневмогидравлических, пружинно-гидравлических установок и схема пружинной установки на один образец, а также порядок установки в них образцов принимают в соответствии с приложением А. Схема рычажного устройства для определения ползучести при нагреве приведена на рисунке Д.2 (приложение Д).
4.1.6 Для измерения деформаций следует использовать измерительные приборы и приспособления для их крепления, применяемые для определения призменной прочности, модуля упругости и коэффициента Пуассона по ГОСТ 24452 (на рисунке 2 показано оборудование для измерения продольных деформаций; при определении поперечных деформаций устанавливаются дополнительные рамки и индикаторы). Допускается использовать другое поверенное измерительное оборудование - стационарно смонтированное (тензодатчики) или съемное (точки для снятия показаний при использовании такого оборудования показаны на рисунке 3 слева), позволяющее определять деформации ползучести с необходимой точностью и достоверностью.
4.1.7 При определении деформаций ползучести сжимающее усилие на образец следует передавать через металлические прокладки толщиной 35-37 мм, размеры которых в плане должны быть не менее размеров поперечного сечения образца. Твердость прокладок и шероховатость их рабочих поверхностей должны удовлетворять требованиям ГОСТ 10180.
4.1.8 Для определения линейных размеров, массы образцов и плотности бетона следует применять средства измерений и оборудование по ГОСТ 10180 и ГОСТ 12730.1, а для определения влажности бетона - по ГОСТ 12730.2.
4.1.9 Насыщение образцов водой или нефтепродуктами следует производить с применением оборудования по ГОСТ 24452.
4.1.10 Для измерения температуры и определения влажности окружающей среды в процессе испытаний следует применять термометры (термографы) и психрометры (гигрографы).
Ползучесть бетона
С течением времени деформации в бетоне могут возрастать без увеличения внешней нагрузки. Данное свойство материалов называется ползучестью.
Ползучесть – способность бетона к увеличению деформаций без изменения внешней нагрузки.
Стоит отметить, что ползучесть свойственна не только бетону, но и многим пластикам, льду, а также металлам при повышенных температурах и другим материалам.
В бетоне ползучесть проявляется как при сжатии, так и растяжении. В большинстве случаев ползучесть является отрицательным фактором, однако в ряде случаев ползучесть можно считать полезным свойством – например, ползучесть может приводить к увеличению трещиностойкости и перераспределению усилий в статически неопределимых конструкциях.
Численно ползучесть бетона может характеризоваться двумя показателями:
1. Коэффициент ползучести. Коэффициентом ползучести называется отношение деформаций ползучести к упругим деформациям. Таким образом, если мы говорим, что коэффициент ползучести равен 2,0, то это означает, что деформации ползучести вдвое превышают упругие, а полные деформации, следовательно, втрое превысят упругие.
2. Мера ползучести.
Релаксация напряжений в бетоне.
Релаксация – способность бетона к уменьшению напряжений при постоянной деформации.
Релаксация и ползучесть имеют единую природу, т.е. при постоянных напряжениях происходит увеличение деформаций бетона (явление ползучести), а при постоянных деформациях происходит уменьшение напряжений в бетоне (явление релаксации).
Ползучесть бетона
Ползучести бетона отмечено ɛ п , является задержка напряжения в дополнение к упругой деформации , вызванной применением нагрузки к конкретной части.
При изучении отложенных деформаций бетона исследователи привыкли различать усадку бетона, происходящую без приложения нагрузки, от ползучести бетона, отложенной деформации, дополняющей деформацию усадки и возникающей под действием заряда. Они предполагают, что ползучесть не зависит от усадки.
Резюме
Физико-химическая природа отложенных деформаций
Бетон можно разделить на две твердые фазы, цементную матрицу и заполнители, и жидкую фазу, воду, содержащуюся в порах.
В цементной матрице возникают вязкие деформации из-за приложения нагрузки. Недавние испытания показали роль ползучести листов CSH ( гидратированного силиката кальция или гидрата силиката кальция) в замедленных деформациях затвердевшего бетона. Заполнители играют лишь пассивную роль в противодействии вязким деформациям цементного теста. Однако использование заполнителей низкого качества показало, что они могут увеличивать замедленные деформации.
Жидкая фаза включает:
- свободная вода, не связанная с капиллярами, которая может мигрировать в бетон в случае открытой пористости,
- адсорбированная вода , присоединенная к поверхности кристаллов,
- межкристаллическая вода, заключенная в очень мелкие поры,
- внутрикристаллическая вода, химически связанная с гидратами .
Сеть пор бетона составляет более 10% объема бетона. Пористость играет важную роль в замедленных деформациях бетона, особенно в случае открытой пористости. Это влияние тем больше, чем больше поры и позволяют воде циркулировать.
При изучении ползучести различают:
- ползучесть эндогенная или основная ползучесть,
- ползучесть при высыхании или ползучесть при высыхании .
Первая кратковременная ползучесть будет соответствовать механизму диффузии свободной воды в капиллярном пространстве бетона. Тогда вода будет участвовать в механизме равновесия материала, потому что она может воспринимать напряжения. В долгосрочной перспективе эта эндогенная ползучесть может быть вызвана деформацией гидрата.
Вторая ползучесть может быть вызвана:
- устранение дополнительного обезвоживания по сравнению с тем, что получено в ненагруженной пробирке,
- частицы твердого вещества, которые перекристаллизовались бы в областях наименьшего напряжения.
Ползучесть зависит от условий окружающей среды бетона (температура, влажность), эффекта накипи и состава бетона.
Для ограниченных значений нагрузки (около 45% разрушающей нагрузки для Еврокода 2) деформация ползучести пропорциональна приложенному постоянному напряжению. В таком случае бетон считается « линейно-вязкоупругим » материалом .
Чем больше возрастает возраст бетона при приложении нагрузки, тем меньше деформация замедленной ползучести. Бетон - это «стареющий линейно-вязкоупругий» материал.
Ползучесть состоит из двух частей:
- обратимая деформация, также называемая возвратом или возвратом к ползучести, когда деталь разгружается.Испытания показали, что реакция ползучести больше не является линейной по отношению к интенсивности разгрузки.
- необратимая деформация, сохраняющаяся после разгрузки, зависящая от возраста бетона и достигающая окончательного значения после длительного периода.
В неблагоприятных условиях конечная ползучесть может достигать значения, примерно в три раза превышающего значение мгновенной упругой деформации.
С учетом отзыва в Еврокоде 2 (Стандарт EN 1992)
Еврокод 2 требует, чтобы отсроченные деформации - усадка и ползучесть - учитывались в их последствиях для проверки предельных состояний эксплуатационной пригодности. Для ползучести эффекты при проектировании должны учитываться в квазипостоянной комбинации воздействий, независимо от исследуемой ситуации (EN 1992-1-1, пункт 2.3.2.2).
В Еврокоде 2 предлагаются различные методы учета ползучести в зависимости от требуемой точности.
Ползучесть необходимо учитывать для эффектов второго порядка сжатых деталей.
Ползучесть, как и усадка, вызывает потерю величины натяжения предварительно напряженных тросов в предварительно напряженных бетонных конструкциях.
Читайте также: