Коэффициент линейного температурного удлинения бетона гост
Коэффициенты линейного расширения строительных материалов
В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.
Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10 -6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10 -6 1/град, что в 2 раза больше, чем у стали.
Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.
Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град -1 ) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.
По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.
Коэффициент линейного температурного удлинения бетона гост
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Методы определения деформаций
усадки и ползучести
Concretes. Methods of shrinkage and
creep flow determination
Дата введения 1982-01-01
УТВЕРЖДЕН Постановлением Государственного комитета СССР по делам строительства от 31 декабря 1980 г. N 237.
Настоящий стандарт распространяется на все виды цементных, а также силикатных бетонов, применяемых в промышленном, энергетическом, транспортном, водохозяйственном, жилищно-гражданском и сельскохозяйственном строительстве, в том числе на бетоны, подвергающиеся в процессе эксплуатации нагреву, насыщению водой или нефтепродуктами.
Стандарт устанавливает методы испытаний для определения деформации усадки путем измерения их в направлении продольной оси незагруженного образца и деформаций ползучести путем измерения их в направлении продольной оси образца, загруженного постоянной по величине осевой сжимающей нагрузкой.
Предусмотренные настоящим стандартом испытания проводят только на образцах, специально изготовленных из бетонной смеси. Образцы, выпиленные или вырубленные из элементов конструкций при испытании бетона на усадку и ползучесть не применяют.
В стандарте учтены рекомендации СЭВ по стандартизации PC 279-65 в части методов определения усадки и ползучести, а также рекомендации РИЛЕМ Р12 в части методов определения ползучести.
1. МЕТОДЫ ОТБОРА И ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ
1.1. Определение деформаций усадки и ползучести должно проводиться на призматических образцах размерами 7х70х280, 100х100х400, 150х150х600, 200х200х800 мм не гидроизолированных от влагообмена с окружающей средой. В качестве базового образца следует принимать призму размерами 150х150х600 мм.
Для определения деформаций усадки ячеистого бетона допускается применять призмы размерами 40х40х160 мм.
1.2. Размеры образцов для определения деформаций усадки и ползучести выбирают в зависимости от наибольшей крупности заполнителя в пробе бетонной смеси в соответствии с требованиями ГОСТ 10180-78.
1.3. Образцы изготовляют отдельными сериями.
Деформации ползучести определяют одновременно с определением деформаций усадки, при этом перед испытаниями определяют прочность бетона на сжатие по ГОСТ 10180-78 и призменную прочность по ГОСТ 24452-80.
Каждая серия должна состоять из 9 образцов призм, из которых 3 образца предназначают для определения призменной прочности, 3 образца - для определения деформации усадки и 3 образца - для определения деформаций ползучести, а также 3 образцов-кубов с ребрами размерами, соответствующими размеру рабочего сечения призмы.
При определении только деформаций усадки серия должна состоять не менее чем из 3 образцов призм.
1.4. Изготовление и хранение образцов до распалубливания должно соответствовать требованиям ГОСТ 10180-78.
1.5. После распалубливания все образцы одной серии должны (включая образцы-кубы) храниться вплоть до начала испытаний в одинаковых, как правило, нормальных температурно-влажностных условиях согласно ГОСТ 10180-78.
При определении только усадки бетона образцы до начала испытаний должны храниться во влажных условиях, исключающих возможность испарения влаги из бетона.
1.6. Образцы из ячеистого бетона, изготовленные в соответствии с требованиями ГОСТ 10180-78, перед испытанием на усадку и ползучесть должны быть погружены в воду и храниться в ней в течение 3 сут в горизонтальном положении.
1.7. Число образцов в серии и условия их хранения при определении деформаций температурной усадки и ползучести при нагреве принимают в соответствии с обязательным приложением 1.
2. ОБОРУДОВАНИЕ, ПРИБОРЫ И МАТЕРИАЛЫ
2.1. Оборудование и приборы для проведения испытаний должны отвечать требованиям настоящего стандарта, быть поверены и аттестованы в установленном порядке в соответствии с ГОСТ 8.001-80 и МУ 8.7-77.
2.2. Для определения деформаций усадки применяют устройства, схемы которых показаны на черт.1 и 2. Устройство, схема которого приведена на черт.1, предназначено для измерения деформаций усадки образцов с поперечным сечением размерами 40х40 мм.
Схема устройства для определения деформаций усадки
образцов с размерами поперечного сечения 40х40 мм
2 - кронштейн; 3 - конусообразный выступ; 4 - нижняя опора:
5 - индикатор; 6 - образец; 7 - репер;
а - размер стороны поперечного сечения образца; Н - высота образца;
- база измерений.
Устройство, схема которого приведена на черт.2, предназначено для измерения деформаций усадки образцов с сечением размерами более 40х40 мм и состоит из уложенной на опоры 7 плоской сварной сетки 6, изготовленной из гладких арматурных стержней с ячейками размером не более 20 мм.
2.3. Для определения деформаций ползучести применяют пневмогидравлические, пружинно-гидравлические или пружинные испытательные устройства, а также рычажные, приведенные в обязательном приложении 1.
Пневмогидравлическое устройство, схема которого приведена на черт.3, включает следующие основные узлы: плоскую раму, гидродомкрат с манометром и два баллона с инертным газом, в которых создают избыточное и расчетное давление.
Схема устройства для определения деформаций усадки
образцов с размерами поперечного сечения более 40х40 мм
1 - индикатор часового типа; 2 - рамка для крепления индикаторов; 3 - качающаяся штанга;
4 - образец; 5 - металлические пластинки по торцам образца; 6 - плоская сварная сетка; 7 -опора.
Схема пневмогидравлического устройства
для определения деформаций ползучести
2 - верхняя опорная плита; 3 - траверса; 4 - баллон с инертным газом (с избыточным
давлением по отношению к расчетному); 5 - баллон с инертным газом при расчетном давлении;
6 - гидравлический домкрат с шарнирной опорной плитой; 7 - вентиль баллона; 8 - входной вентиль;
9 - манометр образцовый; 10 - образец.
Пружинно-гидравлическое испытательное устройство, схема которого приведена на черт.4, состоит из пространственной рамы, снабженной в верхней ее части гидравлическим мембранным домкратом 2, а в нижней части - пакетом тарельчатых пружин 7 и регулировочными винтами 6. Контроль передаваемого на образец усилия осуществляют с помощью образцового манометра 1 гидравлического домкрата 2.
Схема пружинно-гидравлического устройства
для определения деформаций ползучести
1 - образцовый манометр; 2 - гидравлический домкрат плунжерного типа сгибкой диафрагмой;
3 - поршень домкрата; 4 - стойки; 5 - опорная плита;
6 - регулирующие винты; 7 - тарельчатые пружины; 8 - образец.
Пружинное испытательное устройство, схема которого приведена на черт.5, состоит из стоек 1, верхней траверсы 2 и постамента 7, образующих жесткую замкнутую раму, внутри которой размещены испытываемый образец 9, спиральные пружины 8 и установлен переносной гидравлический домкрат 6. Средняя 3 и нижняя 4 подвижные траверсы служат для передачи усилия, установочный винт 10 фиксирует образец до начала его загружения. С помощью домкрата 6 создают сжатие предварительно протарированной спиральной пружины и заданное усилие в образце, после чего положение нижней траверсы фиксируют гайками 5, а домкрат 6 освобождают и переносят на следующую установку.
Требуемая величина усилия, передаваемого на образец, обеспечивается выбором количества пружин 8 и гидравлическою домкрата соответствующей мощности.
2.4. Методы определения деформаций температурной усадки и ползучести при нагреве приведены в обязательном приложении 1; оборудование для нагрева образцов принимают в соответствии с ГОСТ 24452-80.
Схема пружинного устройства для определения
деформаций ползучести
2 - верхняя траверса; 3 - средняя траверса; 4 - нижняя траверса;
5 - гайки; 6 - гидравлический домкрат; 7 - постамент; 8 - спиральная пружина;
9 - бетонный образец; 10 - установочный винт.
2.5. Для измерения деформаций следует использовать измерительные приборы и приспособления для их крепления, применяемые для определения призменной прочности, модуля упругости и коэффициента Пуассона по ГОСТ 24452-80.
2.6. При определении деформаций ползучести сжимающее усилие на образец следует передавать через металлические прокладки толщиной 35-37 мм, размеры которых в плане равны размеру поперечного сечения образца. Твердость прокладок и шероховатость их рабочих поверхностей должны удовлетворять требованиям ГОСТ 10180-78.
2.7. Для определения линейных размеров, массы образцов и плотности бетона следует применять средства измерений и оборудование по ГОСТ 10180-78 и ГОСТ 12730.1-78, а для определения влажности бетона - по ГОСТ 12730.2-78.
2.8. Для насыщения образцов водой или нефтепродуктами следует применять оборудование по ГОСТ 24452-80.
2.9. Для измерения температуры и определения влажности окружающей среды в процессе испытаний следует применять серийно выпускаемые термометры (термографы) и психрометры (гигрографы).
2.10. Для гидроизоляции образцов рекомендуется применять полиэтиленовую пленку с липким слоем по ГОСТ 10354-82 и парафин по ГОСТ 23683-79.
Допускается применение других гидроизоляционных материалов, надежно исключающих массообмен между образцом и окружающей средой.
3. ПОДГОТОВКА К ИСПЫТАНИЯМ
3.1. Подготовку образцов к испытаниям следует начинать с их внешнего осмотра и определения линейных размеров, допускаемые отклонения которых от номинальных размеров должны удовлетворять требованиям ГОСТ 10180-78.
3.2. Торцевые поверхности всех образцов, предназначенных для определения ползучести и усадки, должны быть закрыты металлическими пластинами толщиной 4-5 мм, наклеиваемыми с помощью быстрополимеризующихся клеев.
К торцевым поверхностям образцов размерами 40х40х160 мм, подвергаемых испытанию на усадку, приклеивают реперы в соответствии со схемой, показанной на черт.1.
Реперы изготавливают из инвара. Диаметр основания репера 7 должен быть не более 20 мм, а высота не более 15 мм.
Приклеиваемую поверхность репера обезжиривают органическим растворителем. Репер нагревают до температуры 50-60 °С и прижимают к образцу в центре торцевой грани, на которую предварительно наносят 2-3 капли клея.
Рекомендуется применять быстрополимеризующийся клей следующего состава (по массе):
эпоксидная смола по ГОСТ 10587-84 . 80 частей
полиэтиленполиамин . 3 части
(Измененная редакция, Изм. N 1).
3.3. На боковых поверхностях образцов размечают базу измерения продольных деформаций, устанавливают крепежные приспособления и измерительные приборы в соответствии с требованиями ГОСТ 24452-80.
3.4. Насыщение (пропитка) образцов водой или нефтепродуктами следует производить по ГОСТ 24452-80.
3.5. Для предотвращения испарения влаги или летучих фракций нефтепродуктов из образцов, пропитанных водой или нефтепродуктами согласно п.3.4, их боковую поверхность следует гидроизолировать внахлест двумя слоями полиэтиленовой пленки с липким слоем с последующим нанесением на нее расплавленного парафина слоем 2-3 мм. Гидроизоляцию торцевых поверхностей образцов производят согласно п.3.2.
3.6. Образцы для определения деформаций температурной усадки и деформаций ползучести при нагреве следует подготавливать в соответствии с требованиями ГОСТ 24452-80.
3.7. Не более чем за сутки до испытания образцов на ползучесть следует определить плотность бетона этих образцов по ГОСТ 12730.1-78, а также влажность бетона по ГОСТ 12730.2-78 на образцах, предварительно испытанных при определении призменной прочности.
3.8. Результаты измерений по пп.3.1 и 3.7 заносят в титульный лист журнала испытаний при определении деформаций усадки и ползучести по форме, приведенной в обязательном приложении 2.
4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
4.1. Испытания для определения деформаций усадки и ползучести следует проводить в помещении или в климатической камере, в которых постоянно поддерживают температуру (20±2) °С и относительную влажность воздуха (60±5)%. Попадание прямых солнечных лучей на образцы не допускается.
4.2. Измерение деформаций только усадки следует начинать не позже чем через 4 ч после распалубливания образцов, а образцов из ячеистого бетона - после насыщения водой по п.1.6.
Коэффициент линейного температурного удлинения бетона гост
Методы определения деформаций усадки и ползучести
Concretes. Methods of shrinkage and creep flow determination
Дата введения 2021-06-01
Предисловие
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 РАЗРАБОТАН Структурным подразделением АО "НИЦ "Строительство" Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) при участии АО "ВНИИГ им.Б.Е.Веденеева"
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2020 г. N 134-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
ЗАО "Национальный орган по стандартизации и метрологии" Республики Армения
Госстандарт Республики Беларусь
4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 декабря 2020 г. N 1347-ст межгосударственный стандарт ГОСТ 24544-2020 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2021 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"
1 Область применения
Настоящий стандарт распространяется на все виды цементных, а также силикатных бетонов, применяемых во всех областях строительства, и устанавливает методы определения деформаций усадки и ползучести.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 310.2 Цементы. Методы определения тонкости помола
ГОСТ 310.4 Цементы. Методы определения предела прочности при изгибе и сжатии
ГОСТ 5382 Цементы и материалы цементного производства. Методы химического анализа
ГОСТ 5632 Нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки
ГОСТ 8269.0 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний
ГОСТ 8735 Песок для строительных работ. Методы испытаний
ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний
ГОСТ 10180 Методы определения прочности по контрольным образцам
ГОСТ 10181 Смеси бетонные. Методы испытаний
ГОСТ 10354 Пленка полиэтиленовая. Технические условия
ГОСТ 12730.1 Бетоны. Методы определения плотности
ГОСТ 12730.2 Бетоны. Метод определения влажности
ГОСТ 23683 Парафины нефтяные твердые. Технические условия
ГОСТ 24452 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
ГОСТ 31108 Цементы общестроительные. Технические условия
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 линейная относительная деформация усадки : Относительное уменьшение линейных размеров ненагруженного образца во времени, вызванное гидратацией цемента (контракцией), уменьшением влажности цементного камня и его карбонизацией.
3.2 линейная относительная деформация усадки при нагреве : Относительное уменьшение линейных размеров ненагруженного образца, вызванное испарением из него влаги при нагреве.
3.3 линейная относительная деформация температурного расширения : Относительное увеличение размеров образца, вызванное температурным расширением при нагреве.
3.4 линейная относительная температурно-усадочная деформация : Относительное изменение линейных размеров образца, вызванное совместным действием температуры и усадки бетона.
3.5 линейная относительная деформация ползучести : Относительное изменение линейных размеров образца во времени, вызванное действием постоянной внешней нагрузки за вычетом деформаций усадки.
4 Методы определения деформаций усадки и ползучести при сжатии
В настоящем разделе и приложениях А, Б, В и Г приведены методы испытаний при стандартном температурном режиме для определения деформаций усадки и ползучести путем измерения их в направлении продольной и поперечной осей (при необходимости такой задачи) незагруженного образца и образца, загруженного постоянной по величине осевой сжимающей нагрузкой.
Методы определения деформаций температурной усадки и ползучести бетона при нагреве приведены в приложении Д.
Методика определения деформаций ползучести при изгибе (упрощенная методика испытания на ползучесть) и вычисление основных деформационных характеристик приведены в приложении Е.
4.1 Испытательные стенды, приборы, измерительное оборудование и материалы
4.1.1 Оборудование и приборы для проведения испытаний должны соответствовать требованиям настоящего стандарта, быть повереными* и аттестоваными* в установленном порядке.
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.
4.1.2 Для определения деформаций усадки применяют устройства, схемы которых показаны на рисунках 1 и 2. Устройство, схема которого приведена на рисунке 1, предназначено для измерения деформаций усадки образцов с поперечным сечением размерами 40х40 мм.
Образцы с размерами поперечного сечения более 40х40 мм испытывают с приклеенными по торцам металлическими пластинами согласно 4.3.2 (рисунок 2) без дополнительных испытательных стендов.
4.1.3 Для определения деформаций ползучести применяют пневмогидравлические, пружинно-гидравлические, рычажные или пружинные испытательные устройства. В установку допускается устанавливать одновременно до трех образцов вертикально друг на друга (в виде колонны), как показано на рисунке 3.
1 - стойка; 2 - кронштейн; 3 - конусообразный выступ; 4 - нижняя опора; 5 - индикатор; 6 - образец; 7 - репер; а - размер стороны поперечного сечения образца; H - высота образца; - база измерений.
Рисунок 1 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения 40х40 мм
1 - индикатор часового типа; 2 - рамка для крепления индикаторов; 3 - качающаяся штанга; 4 - образец; 5 - металлические пластинки; - база измерения
Рисунок 2 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения более 40х40 мм
4.1.4 При установке нескольких образцов в колонну соосность передачи нагрузки обеспечивается через металлические шарики, устанавливаемые в специальные центрированные выточки в стальных пластинах в соответствии с 4.1.7. Для предотвращения потери устойчивости колонны необходимо использовать дополнительные страховочные устройства от выстреливания шарика. Схема такого устройства приведена на рисунке 3 (справа). Страховочные устройства не должны препятствовать свободному деформированию образцов.
1 - динамометр; 2 - гидравлический домкрат; 3 - стоика (стержень с резьбой); 4 - стальной шар; 5 - стальная пластина, приклеиваемая к образцу; 6 - бетонные образцы; 7 - пружины; 8 - стальная опорная плита; 9 - гайки; 10 - стальные страховочные элементы; - база измерения
Рисунок 3 - Схема устройства установки для определения деформаций ползучести при испытании нескольких образцов в колонне
4.1.5 Принципиальная схема устройства пружинной установки на три образца приведена на рисунке 3 (слева). Схемы пневмогидравлических, пружинно-гидравлических установок и схема пружинной установки на один образец, а также порядок установки в них образцов принимают в соответствии с приложением А. Схема рычажного устройства для определения ползучести при нагреве приведена на рисунке Д.2 (приложение Д).
4.1.6 Для измерения деформаций следует использовать измерительные приборы и приспособления для их крепления, применяемые для определения призменной прочности, модуля упругости и коэффициента Пуассона по ГОСТ 24452 (на рисунке 2 показано оборудование для измерения продольных деформаций; при определении поперечных деформаций устанавливаются дополнительные рамки и индикаторы). Допускается использовать другое поверенное измерительное оборудование - стационарно смонтированное (тензодатчики) или съемное (точки для снятия показаний при использовании такого оборудования показаны на рисунке 3 слева), позволяющее определять деформации ползучести с необходимой точностью и достоверностью.
4.1.7 При определении деформаций ползучести сжимающее усилие на образец следует передавать через металлические прокладки толщиной 35-37 мм, размеры которых в плане должны быть не менее размеров поперечного сечения образца. Твердость прокладок и шероховатость их рабочих поверхностей должны удовлетворять требованиям ГОСТ 10180.
4.1.8 Для определения линейных размеров, массы образцов и плотности бетона следует применять средства измерений и оборудование по ГОСТ 10180 и ГОСТ 12730.1, а для определения влажности бетона - по ГОСТ 12730.2.
4.1.9 Насыщение образцов водой или нефтепродуктами следует производить с применением оборудования по ГОСТ 24452.
4.1.10 Для измерения температуры и определения влажности окружающей среды в процессе испытаний следует применять термометры (термографы) и психрометры (гигрографы).
СНиП 2.03.04-84. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия . Часть 7
2.9. Коэффициент линейной температурной деформации бетона a bt в зависимости от температуры и скорости подъема температуры следует принимать по табл. 14. Коэффициент a bt определен с учетом температурной усадки бетона при кратковременном и длительном его нагреве. При необходимости определения температурного расширения бетона при повторном воздействии температуры после кратковременного или длительного нагрева к коэффициенту линейной температурной деформации a bt следует прибавить абсолютное значение коэффициента температурной усадки бетона a cs соответственно для кратковременного или длительного нагрева.
Коэффициент температурной усадки бетона a cs принимают по табл. 15.
бетона по табл. 9
Расчет не нагрев
Коэффициент линейной температурной деформации бетона a bt × 10 – 6 × град – 1 при температуре, ° С
4, 5, 9 — 11, 23, 24, 25
12 — 18, 27, 29, 30
Примечания: 1. Над чертой приведен коэффициент линейной температурной деформации бетона a bt × 10 – 6 × град – 1 для кратковременного нагрева, под чертой — для длительного нагрева.
2. Значение коэффициента a bt для кратковременного нагрева дано при подъеме температуры на 10 – С/ч и более. Для кратковременного нагрева при подъеме температуры менее чем на 10 – С/ч от значения a bt следует отнять 0,075 (a – b) (10 – v), где а и b значения коэффициентов a bt при кратковременном и длительном нагреве; v — скорость подъема температуры, ° С/ч.
3. Коэффициент a bt для промежуточных значений температуры определяется интерполяцией.
4. Для бетонов состава № 1 с карбонатным щебнем (доломит, известняк) коэффициент a bt увеличивается на 1 × 10 – 6 × град – 1 .
бетона по табл. 9
Расчет на нагрев
Коэффициент температурной усадки бетона — a cs × 10 – 6 × град – 1 при температуре, ° С
ГОСТ 15173-70* Пластмассы. Метод определения среднего коэффициента линейного теплового расширения
Настоящий стандарт распространяется на пластмассы и устанавливает метод определения их среднего коэффициента линейного теплового расширения.
Метод предусматривает определение линейного теплового расширения, не связанного с изменением размеров при нагреве вследствие изменения содержания влаги, отверждения, потери пластификатора или растворителя, снятия внутренних напряжений и других факторов, и поэтому является приближенным.
Стандарт полностью соответствует СТ СЭВ 2899-81.
1. СУЩНОСТЬ МЕТОДА
1.1. Сущность метода состоит в испытании образца пластмассы, при котором определяют:
б) средний коэффициент линейного теплового расширения в установленном интервале температур ( t 1 и t2 - граница установленного интервала температур).
1.2. Средний коэффициент линейного теплового расширения характеризует относительное приращение длины образца, вызванное повышением его температуры от нижней до верхней границы интервала, отнесенное к величине этого интервала.
Определение среднего коэффициента линейного теплового расширения не проводят в интервале температур t2 - t 1 < 10 °С для материалов, имеющих < 30·10 -6 °С -1 и в интервале температур t2 - t 1 < 60 °С для материалов, имеющих < 5·10 -6 °С -1 . Допускаемые погрешности указаны в таблице.
Относительная погрешность определения в интервале температур 10 °С, %
Погрешность измерения температуры и удлинения образца
Измерение удлинения проводят с погрешностью не более 10 -6 м для любых значений коэффициента линейного теплового расширения. Если в процессе нагрева используют теплоноситель, то он не должен влиять на результаты определения.
(Измененная редакция, Изм. № 1).
Выбор интервала температур и требования к точности измерения температуры и удлинения при определении коэффициента линейного теплового расширения предусматриваются в стандартах и технических условиях на пластмассы.
1.6. Определение средних коэффициентов линейного теплового расширения не производят при температуре выше температуры размягчения пластмасс, определяемой по ГОСТ 12021-75, при большей из двух предписываемых для данного материала нагрузок.
Нижняя граница установленного интервала температур t1 или нижнее значение средней температуры минимального интервала предусматривается в стандартах и технических условиях на пластмассы.
В принятом интервале температур приращение длины образца в зависимости от температуры должно быть линейным. При нелинейной зависимости определение проводят в диапазоне температур, в котором выполняются требования линейности.
(Измененная редакция, Изм. № 1).
2. АППАРАТУРА
2.1. Средний коэффициент линейного теплового расширения определяют на приборе, имеющем:
а) термокриокамеру или другие устройства, обеспечивающие нагрев со скоростью не более 1,5 °С/мин в стационарном или нестационарном режимах или термостатирование в интервалах температур, указанных в п. 1.3 и поддержание одинаковой температуры с погрешностью не более 0,2 °С по всей длине образца;
б) устройство, в которое помещают образец, и систему, передающую его расширение на индикатор для измерения удлинения; система должна быть выполнена из материала с наименьшим коэффициентом линейного теплового расширения (рекомендуется использовать плавленый кварц) и должна обеспечивать компенсацию собственного теплового расширения. Если компенсация отсутствует, удлинение образца должно быть откорректировано с учетом удлинения материала, из которого выполнена система. Если система выполнена из плавленого кварца, при испытании материалов со средним коэффициентом линейного теплового расширения более 0,6·10 -6 ° C -1 , коррекцию не проводят;
в) устройство для измерения приращения длины образца при ее увеличении или уменьшении в процессе нагрева путем визуального отсчета или с помощью автоматической записи; устройство не должно оказывать на образец давления более чем 29 кПа;
г) термодатчик, термометр или термопару с индивидуальной градуировкой для измерения температуры образца с погрешностью не более 0,1 °С.
(Измененная редакция, Изм. № 1).
2.2; 2.2.1. (Исключены, Изм. № 1).
2.2.2. При определении в интервале температур, равном или большем 60 °С с максимальной погрешностью не более 10 %, температуру измеряют с погрешностью не более ± 1 °С, а удлинение с погрешностью:
± 1 мкм - при , равном или более 5·10 -6 град -1 ;
± 5 мкм - при , равном или более 30·10 -6 град -1 ;
±10 мкм - при , равном или более 70·10 -6 град -1 .
3. ИЗГОТОВЛЕНИЕ ОБРАЗЦОВ
3.1. Для испытания используют образцы длиной не менее 50 мм, круглого (диаметром (10 ± 0,5) мм) или квадратного поперечного сечения со стороной (7 ± 0,5) мм.
При возникновении разногласий для испытания применяют образцы длиной 50 мм.
3.2. В середине боковой поверхности образца, перпендикулярно к ней, высверливают отверстие диаметром 1 мм до осевой линии образца. Оно предназначено для последующего введения в образец термодатчика или термопары при испытании в нестационарном режиме.
3.3. Поверхность образца должна быть ровной, гладкой, не иметь раковин, трещин и других дефектов. Торцы должны быть перпендикулярны к продольной оси образца.
Если при проведении испытания происходит внедрение в образец контактирующей с образцом части устройства, передающего удлинение на индикатор, то на торцы образца наклеивают гладкие стальные пластинки толщиной до 0,5 мм. Используемый клей должен быть нейтральным по отношению к проверяемым пластмассам.
3.1-3.3. (Измененная редакция, Изм. № 1).
3.4. Из листовых анизотропных материалов образцы вырезают по главным осям анизотропии так, чтобы ось образца совпадала с осью анизотропии. Коэффициент линейного теплового расширения для анизотропных материалов определяют для каждой оси анизотропии.
3.5. Количество образцов для испытания от каждой партии материала и для каждой оси анизотропии должно быть не менее трех.
3.6. Способ и режим изготовления образцов и их термообработка предусматриваются в стандартах или технических условиях на пластмассы.
Если образец в процессе испытания проявляет усадку, его необходимо термообработать при наибольшей температуре. Время термообработки должно быть не менее чем в пять раз больше времени испытания.
4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ
4.1. Перед испытанием устанавливают температурные границы, в которых будет измеряться коэффициент линейного теплового расширения согласно требованиям стандартов и технических условии на пластмассы и пп. 1.3 - 1.5 .
4.2. Длину образца измеряют с погрешностью не более 0,01 мм при температуре (23 ± 2) °С и относительной влажности (50 ± 5) %.
4.3. Определение коэффициента линейного теплового расширения производят в стационарном или нестационарном режимах.
При стационарном режиме проводят термостатирование образца при температуре измерения до тех пор, пока не окончится удлинение образца. Температуру в термокамере доводят при стационарном режиме до температуры t1.
При нестационарном режиме образец нагревают до температуры не менее чем на 10 °С ниже нижнего температурного предела измерения.
4.2; 4.3. (Измененная редакция, Изм. № 1).
4.4. (Исключен, Изм. № 1).
4.5. Образец устанавливают в термокриокамере и вводят в него термопару или термодатчик, если испытания проводят в нестационарном режиме. В случае испытания только в стационарном режиме установка термопары в образце необязательна.
При нестационарном режиме испытания после достижения в образце температуры не менее чем на 10 °С ниже нижней температурной границы измерения настраивают указатель удлинения на начало измерения и начинают нагрев со скоростью не более 1,5 °С·мин -1 .
При стационарном режиме испытания образец термостатируют при температуре t1, затем при температуре t2 и снова при температуре t1.
За начало отсчета принимают показание указателя удлинения при температуре, равной нижней температурной границе.
Измерение приращения длины образца производят при температурах, соответствующих границам интервала.
4.6. Если при стационарном режиме разность результатов измерения при переходе от t1 к t2 и обратно менее 10 мкм на каждые 100 мкм удлинения, то измерение проведено удовлетворительно. При разности более 10 мкм на каждые 100 мкм удлинения, измерение повторяют. Сравнение результатов испытания проводят для каждого образца отдельно.
4.7. Если при нестационарном режиме в материале возникают необратимые изменения длины, то проводят повторный цикл испытаний на том же образце. Допустимая разница удлинения при первом и повторном измерениях - не более 10 мкм на каждые 100 мкм удлинения для одного и того же образца. Если разность в удлинениях больше, то измерение повторяют. За результат принимают данные второго испытания.
4.5 - 4.7. (Измененная редакция, Изм. № 1).
5. ПОДСЧЕТ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ
t1, t2 - нижняя и верхняя границы интервала температур, °С;
l 0 - длина образца при (23 ± 2) °С, мм.
(Измененная редакция, Изм. № 1).
5.3. За результат испытания для каждой партии материала и каждой главной оси анизотропии принимают среднее арифметическое значений отдельных образцов, с округлением до 1·10 -6 ° C -1 .
5.4. Протокол испытания должен содержать следующие данные:
а) наименование и марку материала;
в) способ изготовления образцов;
г) форму и размеры образцов;
д) температуру и время термообработки;
е) пределы температур, в которых испытан материал и режим испытания;
ж) среднее арифметическое значение коэффициента линейного теплового расширения;
Читайте также: