Как выбрать материал сердечника трансформатора
Выбор и параметры сердечника трансформатора
Всем доброго времени суток! В прошлой статье я рассказывал об определении габаритной мощности трансформатора РГ и об определении коэффициента заполнении окна kок трансформатора. Для выбора трансформатора этих данных недостаточно. Существенное влияние на его параметры оказывают заданные величины, например, напряжение, частота, режим и условия работы. Часто тип трансформатора, его сердечник и обмотки известны изначально, в противном случае их следует выбирать исходя из заданных условий.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Как выбрать тип трансформатора?
Тип трансформатора определяется конструкцией применяемого в нём сердечника. В настоящее время выпускается большое разнообразие сердечников в особенности ферритовых. Но среди них можно выделить три основных типа: стержневой (СТ), броневой (БТ) и тороидальный (ТТ). Остальные же являются, по сути, их модификацией с различными конструктивными особенностями.
Сделать однозначный выбор в пользу того или иного типа невозможно, так как каждый обладает своими достоинствами и недостатками и должен применяться в зависимости от назначения и предъявляемых к нему требований. К трансформаторам могут предъявляться следующие требования и их комбинация: массогабаритные, по стоимости, влияние собственных и внешних магнитных полей, конструктивные факторы и технологичность производства.
Основные типы конструкций сердечников трансформаторов: стержневой СТ, броневой БТ и тороидальный ТТ трансформаторы (слева направо).
При условии минимального падения напряжения (∆U) на промышленной частоте (50 Гц) наименьшим объемом обладает БТ, а весом – ТТ. Стержневые трансформаторы несколько уступают броневым (до 10%). При увеличении частоты, по весу – СТ улучшают свои параметры по сравнению с БТ, а по объему – ухудшаться. ТТ при возрастании частоты значительно улучшают массогабаритные показатели. Таким образом, при условии минимального падения напряжения при частоте 50 Гц рекомендуется применение броневых сердечников (БТ), а при повышении частоты следует использовать тороидальные сердечнике (ТТ), если вес и объем играет решающую роль.
Если ключевым требованием к трансформатору является постоянство рабочей температуры (∆T), то здесь рекомендации другие. При малой мощности БТ имеют преимущество, а в остальных случаях следует использовать СТ даже при повышенных частотах. Использование ТТ имеет смысл только на небольших мощностях особенно на повышенных частотах, так как с ростом мощности преимущества по массе и весу сглаживаются, а при больших мощностях (свыше сотен ватт) ТТ начинают уступать как СТ, так и БТ.
В итоге можно сказать, что для трансформаторов небольшой мощности (до 50 Вт) рекомендуется применять БТ и ТТ, а на высоких частотах – ТТ. При мощностях более 50 Вт показатели СТ становятся лучше, чем у БТ, а при мощностях более 250 Вт лучше, чем у ТТ.
Если условием для проектирования трансформатора является наибольшее значение КПД, то на промышленной частоте (50 Гц) лучшие показатели у БТ и СТ в порядке убывания, а на повышенных и высоких – ТТ и БТ, также в порядке убывания. Также стоит отметить, что ТТ обладает наименьшим намагничивающим током, при прочих равных условиях.
На высоких частотах важную роль часто играют магнитные поля рассеяния и восприимчивость к внешним магнитным полям. В этом отношении лучшими показателями отличаются тороидальные трансформаторы (при равномерно распределённой обмотке по сердечнику), а также стержневые трансформаторы (при равном разделении обмотки между стержнями). Собственная емкость у ТТ достаточно высокая по сравнению с БТ и СТ.
С точки зрения технологичности наилучшими показателями обладают БТ и СТ. Из недостатков ТТ здесь можно выделить следующее: необходимость последовательного изготовления сердечника и катушки, а также низкая производительность намотки катушки.
Рекомендуемые области применения различных типов трансформаторов.
Вид трансформатора | На штампованных сердечниках | На ленточных сердечниках | ||
Низковольтные | Малой мощности (до 50 Вт) | БТ | БТ, СТ | |
Средней и большой мощности (более 50 Вт) | 50 Гц | БТ | СТ | |
< 10 кГц | БТ | СТ, ТТ | ||
> 10 кГц | БТ, ТТ | ТТ, СТ | ||
Высоковольтные (тысячи вольт) | < 10 кГц | БТ | СТ, ТТ | |
> 10 кГц | БТ, ТТ | СТ, ТТ | ||
С высоким потенциалом | < 10 кГц | БТ, ТТ | СТ, ТТ | |
> 10 кГц | ТТ, БТ | ТТ, СТ | ||
При необходимости надёжного экранирования | ТТ, СТ | ТТ, СТ | ||
Примечание. Первым указывается тип трансформатора, применение которого предпочтительней. |
Формулы для расчета тороидального трансформатора
Основными параметрами для расчета тороидального трансформатора служат напряжение сети питания (Uc), равное 220 В, значение выходного напряжения (Uн) – 24 В, токовая нагрузка (Iн) – 1,8 А. Для определения мощности вторичной обмотки существует формула: Р = Uн х Iн = 24 х 1,8 = 43,2 Вт.
Далее определяется габаритная мощность трансформаторного устройства по формуле:
Величина коэффициента полезного действия и прочие данные, необходимые для расчетов, выбираются из таблицы, в соответствующей графе и ряде под конкретную габаритную мощность.
Следующим этапом будет расчет площади сечения сердечника по формуле:
Выбор размеров сердечника осуществляется следующим образом:
Ближайшим типом сердечника со стандартными параметрами будет ОЛ50/80-40, с площадью сечения S = 60 мм 2 , которая должна быть не менее расчетной. Внутренний диаметр сердечника определяется в соответствии с условием, что dc имеет значение большее или равное dc’:
Если в качестве примера взять сердечник, изготовленный из стали Э320, то в этом случае количество витков на один вольт будет определяться по формуле:
Теперь необходимо определить количество витков в первичной и вторичной обмотках:
Поскольку в любом тороиде рассеивание магнитного потока совсем незначительное, падение напряжения в обмотках возможно определить только по их активному сопротивлению. В результате, значение относительной величины падения напряжения в обмотках тороидального трансформатора будет намного меньше, чем в обычных трансформаторах. В связи с этим, потери на сопротивлении вторичной обмотки компенсируются увеличением количества витков примерно на 3%. Расчет будет выглядеть следующим образом: W1-2=133 х 1,03=137 витков.
Диаметры обмоточных проводов можно определить по формуле:
Здесь I1 является током первичной обмотки, определяемый по собственной формуле: I1=1,1 (P2/Uc)=1,1 (48/220)=0,24A
Диаметр провода выбирается по ближайшему значению в сторону увеличения, что будет составлять 0,31 мм.
Трансформаторы, изготовленные по расчетам с помощью таблицы, прошли успешные испытания при постоянной максимальной нагрузке, воздействующей на протяжении нескольких часов. Таким образом, расчет тороидального трансформатора позволяет получить точные результаты, подтвержденные на практике. С помощью этой методики можно определить необходимые параметры для любого устройства.
Основные размеры трансформатора
Геометрические размеры трансформатора в большинстве случаев являются определяющими для его технико-экономических показателей. Основными размерами катушки трансформатора являются её высота и ширина (толщина), ограниченные размерами сердечника. Для сердечника основными размерами будут: ширина стержня, несущего катушку а; толщина стержня b; ширина окна с и высота окна h.
Основные размеры сердечников трансформаторов разных типов.
В технических характеристиках на сердечники и литературе единицей измерения размеров, как правило, является миллиметры мм (mm).
Для упрощения расчётов и некоторой унификации сердечников в отечественной литературе и методиках расчёта был введен так называемый базовый размер. В качестве базового может быть взят один из основных размеров трансформатора. В большинстве случаев в качестве базового размера берётся ширина стержня а. Тогда геометрия сердечника описывается следующими соотношениями
Используя базовый размер а и безразмерные коэффициенты x, y, z можно выразить все геометрические характеристики трансформатора: длины, сечения, поверхности и объёмы. Например, сечение сердечника Sc = ab, а с учетом базового размера Sc = ya2. Объём броневого трансформатора БТ
а с учетом базового размера
то есть геометрические параметры трансформатора с учётом базового размера выражаются формулами типа
где k – может иметь значение от 1 до 3, в зависимости от типа величины (1 – длины; 2 – площади, поверхности, сечения; 3 – объёмы);
φi – функция геометрической характеристики трансформатора, индекс «i» указывает конкретную характеристику.
Характеристика трансформатора | Обозначение функции | Обозначение характеристики |
Длина средней магнитной линии | φl | lc= φla |
Средняя длина витка катушки | φw | lw= φwa |
Сечение сердечника (геометрическое) | φs | sc= φsa2 |
Полное сечение (площадь) окна сердечника | φok | sok= φoka2 |
Площадь поверхности охлаждения катушки | φпк | Пк= φпкa2 |
Площадь поверхности охлаждения сердечника | φпс | Пс= φпсa2 |
Объем, занимаемый катушкой | φk | Vk= φka3 |
Объем, занимаемый сердечником | φс | Vс= φсa3 |
Геометрические характеристики трансформатора и их функции.
Функции геометрии не имеют размерности, поэтому с их помощью проще проводить анализ различных типов трансформаторов.
Методика расчета – пошаговая инструкция
Сам же расчет тороидального трансформатора разделяется на две части:
- Непосредственно рассчитать мощность тороидального сердечника, чтобы ее определить вы можете получить, при наличии у вас конкретного сердечника, или заданной мощности, то определить размеры будущего трансформатора.
- Расчет собственно электрической части, которая включает в себя количество витков в обмотках, а также какое сечение будет применяться в обмотках и материал провода.
Расчет сердечника
Его мы произведем по формуле, которая уже включает в себя константы, для упрощения понимания его результатов. Дальше останется подставить в ниже приведенную формулу только переменные значения, а именно:
Рекомендуем! Как сделать газовую горелку самостоятельно
«P=1,9*Sc*So», где:
- P – это мощность, которую возможно получить, применяя сердечник с таким габаритными размерами
- 1,9 – результат математических действий над всеми константами для данного вида трансформаторов
- Sc- площадь сердечника, единица измерения сантиметры квадратные
- So – площадь отверстия в теле сердечника, в «кв. см.»
Формулы расчета площади сечения тороидального сердечника
Если сделанный трансформатор будет иметь основное назначение – сварка, то размеры его сердечника должны быть адекватными, иначе полученной мощности устройства будет не достаточно для выполнения своих функций. Для примера возьмем следующие значения и применив калькулятор вычислим. «P=1,9*70*70=9310 Ватт»
Определим количество витков первичной обмотки
В первую очередь рассмотрим расчет с единой первичной обмоткой, без регулировки. Для этого сначала выясним, сколько витков обмотки должен иметь тороидальный трансформатор для получения 1 вольта напряжения. Применим следующую формулу. К=35/ Sc, где:
- K – количество витков на 1 вольт напряжения.
- 35 – это константа, которая одинакова для всех типов тороидальных сердечников.
- Sc- площадь сердечника, единица измерения сантиметры квадратные.
Таким образом, если у нас имеется сердечник площадью 70 «кв. см.», то подставив значения в формулу, получим следующую ситуацию. «K=35/70=0,5» витка на каждый вольт, и соответственно объём первичной обмотки узнаем, применив соответствующую формулу. «W1=U1*K», где:
- W1- количество витков в первой обмотке.
- U1 – необходимое напряжение в этой точке.
- K – количество витков на 1 вольт напряжения.
«W1=220*0,5=110» – витков. С учетом того, что мы проводим вычисления для сварочного трансформатора, то примем за рабочее напряжение вторичной равное 35 вольт, тогда исходя из аналогичной формулы, получим. «W2=35*0,5=17,5» – витков.
Расчет сечения применяемых проводов
Чтобы рассчитать необходимые сечения нужно понять какой ток будет через них протекать, это единственный параметр который влияет на толщину используемого материала, итак, вычисление величины тока в обмотках трансформатора: «I пер.=9310 Ватт/220 Вольт=42.3 Ампера» С вторичной обмоткой несколько сложнее, все должно опираться на напряжение дуги и ток сварки. «I свар.=(29 Вольт-14)/0.05=300 Ампер», где 29 вольт среднее значение дуги сварки. Теперь проверяем, возможна ли такая мощность у нашего устройства 300 Ампер*29 Вольт=8700 Ватт.
Рекомендуем! Как сделать индукционный нагреватель и печь из сварочного инвертора
Это значение вполне укладывается в мощность, которой обладает тороидальный трансформатор, рассчитываемый нами, поэтому 300 Ампер, считаем током вторичной обмотки. Проведя эти нехитрые вычисления, для которых даже не всегда нужен калькулятор, можно перейти к определению сечения проводов и их материала.
Из руководящих документов таких как, например «ПУЭ», известно, что для продолжительной работы требуется 1 квадратный миллиметр сечения меди на каждые 5 ампер тока, а при использовании алюминия 2 ампера. Исходя из этих данных, вычисляем сечение проводов в устройстве для меди:
- Первичная обмотка=42,3/5=8,46 кв. мм, ближайший стандарт сечения это 10.
- Вторичная обмотка=300/5=60 кв. мм, выбираем следующее по стандарту сечение в сторону увеличения это 70.
Применяем условие продолжительности нагрузки 40 процентов, так как никто не работает все время под нагрузкой. В этом случае сечение можно уменьшить в два раза, тогда получаем:
- 8,46/2=4,23 ближайший стандарт сечения -6 кв. мм.
- 60/2=30 следующий стандарт 35 кв. мм.
Выбор материала сердечника
На данный момент разработано большое количество магнитных материалов, из которых изготавливают сердечники трансформаторов. Основными из них являются:
- Электротехнические стали используются на частотах до десятков кГц и имеют индукцию насыщения BS ≤ 2 Тл. На частоте 50 Гц применяется сталь толщиной 0,35 – 0,5 мм, а выше – толщиной 0,05 – 0,15 мм. Например, 3411, 3412, 3421, 3422 и т.д.
- Электротехнические сплавы используются на частотах до 100 кГц с индукцией насыщения до 1,5 Тл. Изготавливаются в виде ленты толщиной 0,05 – 0,1 мм. Например, 79НМ, 34НКМП и т.д.
- Ферриты применяются в широком диапазоне частот от единиц кГц до единиц МГц с индукцией насыщения до 0,5 Тл. Изготавливаются в виде сердечников различных типов. Например, 1500НМ3, 700НМ, N72, М33 и т.д.
- Магнитодиэлектрики имеют незначительную магнитную проницаемость до сотен единиц, а индукцию насыщения и рабочую частоту в широком диапазоне в зависимости от типа:
— карбонильное железо (BS < 2,18 Тл, частота до 100 МГц), например, МР-20, МР-100 и т.д.;
— альсиферы (BS = 0,2 – 0,5 Тл, максимальная частота 20 – 700 кГц), например, ТЧ-90, ВЧ-32 и т.д.;
— пресспермы (BS = 0,5 – 0,8 Тл, частота до 100 кГц), например, МП-60, МП-140, МП-250 и т.д.
Основными параметрами магнитных материалов являются: индукция насыщения BS, остаточная индукция Br, абсолютная магнитная проницаемость μa, удельные потери Руд на единицу объема или массы, коэрцитивная сила Нс, прямоугольность петли гистерезиса Br/BS.
Материал сердечника должен позволять изготавливать сердечники наименьшего объема (высокое значение μa) и обладать минимальными потерями мощности (низкое значение Руд). Но зачастую данные требования противоречивы, поэтому необходимый выбор материала должен основываться на достижении наилучшего значения наиболее важного для изделия параметра. Чаще всего разработчики в качестве основного ограничения выбирают массогабаритные характеристики материала с приемлемыми потерями мощности.
С выбором материала сердечника необходимо определить коэффициент заполнения сердечника kc зависит от вида сердечника. Для прессованных (ферриты, магнитодиэлектрики) kс = 1, а для ленточных и шихтованных зависит от толщины магнитного материала
Толщина ленты, мм | 0,35 | 0,15 | 0,1-0,08 | 0,05 | 0,02 |
Коэффициент заполнения сердечника, kc | 0,93 | 0,9 | 0,85 | 0,75-0,8 | 0,65-0,7 |
Для приблизительных расчётов в случае ленточных и шихтованных сердечников можно принимать kс = 0,9.
Выбор материала и типа сердечника
Материал сердечника и его тип для применения в импульсном источнике питания проектировщики поначалу зачастую выбирают наугад. Хотя в любом приложении может подойти сердечник почти из любого материала и любого типа, все-таки можно сделать осознанный оптимальный выбор, а не просто "закрыть глаза и ткнуть пальцем в страницу".
Прежде всего следует выбрать материала сердечника. Все такие материалы — это сплавы, основанными на феррите. Основным фактором, определяющим достоинства материала, являются его потери при рабочей частоте и магнитной индукции приложения. Лучше всего начать с материалов, которые сами производители сердечников рекомендуют для использования в импульсных источниках питания с ШИМ, и тех, которые обычно используются в проектной практике (табл. Г.1).
Таблица Г.1. Материалы для сердечников, обычно используемые в промышленности
Используя один из указанных в табл. Г.1 материалов, проектировщик может быть уверен в том, что сделал правильный выбор феррита (и не без основания). Мо- пермаллой — это сплав феррита с немагнитным молибденом. Молибден действует как распределенный воздушный зазор внутри материала, благодаря чему мопермал- лой прекрасно подходит для приложений со смещенным постоянным током и униполярных приложений. К сожалению, этот материал применяется только в кольцевых сердечниках и используется обычно для дросселей выходных фильтров.
А что, если на рынке появился какой-то новый материал? Как его оценить? В первую очередь следует обратить внимание на потери в сердечнике (Вт/см 3 ), степень понижения кривой намагничивания при повышенных температурах и на то, существует ли требуемый тип сердечника (например, с воздушными зазорами). Главный вопрос — это потери сердечника, состоящие из гистерезисных потерь и потерь от вихревых токов. Производители применяют графики, показывающие величину этих потерь в зависимости от рабочей частоты и максимальной рабочей магнитной индукции, что облегчает сравнение различных материалов (рис. Г.4).
Рис. Г.4. Кривые, демонстрирующие объемные потери сердечника в зависимости от частоты и Вт (для материала ЗС8 — данные любезно предоставлены компанией Philips Components)
Тем не менее, будьте внимательны: производители используют разные единицы измерения (теслы или гауссы) и разные основы (объем или вес сердечника). Переводные коэффициенты представлены в Приложении Е. Для того чтобы воспользоваться графиками производителей, проектировщик должен точно знать, какую собирается использовать рабочую частоту.
Вторым важным фактором является максимальная магнитная индукция (BSM). Промышленной нормой является допустимое значение потерь не более 2% от общего КПД источника питания. Например, при частоте 50 кГц номинальное значение fitrax должно составлять половину значения Вум. Для поддержания постоянного уровня потерь в сердечнике внутри источника питания значение Впш должна соответствовать ограничениям, представленным в табл. Г.2.
Таблица Г.2. Рекомендуемые пределы значения магнитной индукции в зависимости от частоты
Чтобы воспользоваться графиком, аналогичным показанному на рис. Г.4, найдите на оси X требуемое значение В^, перемещайтесь вертикально вверх до пересечения с кривой, соответствующей интересующей частоте, и определите по оси Y значение объемных потерь в сердечнике.
Второй оценочный аспект заключается в том, насколько изменяется значение 5sat материала с ростом рабочей температуры (рис. Г.5).
Рис. Г.5. Кривые, иллюстрирующие изменения Bsa, при различных температурах сердечника (для материала ЗС8 — данные любезно предоставлены компанией Philips Components)
Такое изменение различно для разных материалов. В основном, для общепринятых материалов при температуре 100°С следует ожидать падения 5sat в 30%. Это говорит проектировщику о том, что никогда не следует превышать порог 70% номинальной магнитной индукции насыщения материала сердечника. Наконец, некоторые материалы проявляют меньшие потери в сердечнике при увеличении температуры. Сердечники всегда будут иметь более высокую температуру, чем окружающая среда, и потому нагрев сердечника на 10
40°С — вполне нормальное явление. Иногда на графиках производителей сердечников показана эта точка при заданном уровне возбуждения. Если материал достигает минимальных потерь при температуре 50°С, то это лишь на руку проектировщику.
Как только материал сердечника выбран, следует рассмотреть тип сердечника. Производители выпускают сердечники самых разнообразных типов — обычно они разбиваются на категории, показанные на рис. Г.6. Каждая категория имеет преимущества по размеру, стоимости или экранированию, и все эти факторы должны рассматриваться с точки зрения приложения.
Рис. Г.6. Общепринятые типы магнитных сердечников
Обычно сердечники разделяются на два типа: кольцевые и ленточные сердечники. Трансформаторы на кольцевых сердечниках обходятся дороже, поскольку для намотки витков на сердечник требуется специальное оборудование, однако они выигрывают с точки зрения степени излучения магнитного потока за пределы трансформатора. Ленточные сердечники обходятся дешевле при намотке, однако стоимость их основных компонентов оказывается выше, чем у кольцевых.
Выбор материала сердечника для трансформаторов/катушек индуктивности
Порошковые сердечники изготавливаются из множества материалов. Магнитному сплаву придается форма мелкодисперсных частиц диаметром от 5 до 200 мкм. Частицы покрываются изолирующим материалом толщиной от 0,1 до 3 мкм, и прессуют в пресс-формах при усилии до 300.000 фунтов на квадратный дюйм (21.000 кг/см 2 ). При таких высоких давлениях необходимо использовать оснастку из карбида вольфрама. Возможно большое разнообразие форм порошковых сердечников, но самыми распространенными являются тороиды. На маленькие тороиды наносится покрытие из парилена (поли-n-ксилилен, parylene), а на большие - эпоксидное. Покрытие необходимо для предотвращения короткого замыкания в процессе намотки обмотки и эксплуатации.
Изменение размера частиц, толщины их покрытия и давления позволяет изменять проницаемость готовых порошковых сердечников в диапазоне от 14 до 350. Затем сердечники отжигаются при высокой температуре в атмосфера водорода. Отжиг снимает внутренние напряжения, возникшие при прессовании, препятствует окислению и улучшает магнитные свойства порошковых сердечников.
Потери на вихревые токи в порошковых сердечниках минимальны из-за того, что каждая частица магнитного материала изолирована от других. Изолирующий материал обеспечивает распределенный воздушный зазор, который снижает проницаемость и дает возможность сердечнику запасать значительное количество энергии. Отсутствие локализованного воздушного зазора устраняет вредное действие краевого эффекта и связанных с ним потерь.
Порошковое железо выпускается с проницаемостью от 10 до 90 и является самым дешевым порошковым материалом. Из-за сложности производства изготовление сердечников с более высокими проницаемостями практически нецелесообразно. Кроме тороидов оно выпускается в виде стержней и Е - и I - сердечников. Насыщается в районе 10 кГс, но имеет очень большие потери.
Хотя потери в порошковом железе и высокие, они ниже, чем в трансформаторной стали. Оно эффективно применяется в виде стержней при очень низких уровнях потока для подстройки резонансных контуров с трансформаторной связью. Порошковое железо также используется в фильтрах с низкими эксплуатационными характеристиками, которые должны выдерживать большие постоянные токи, а цена имеет определяющее значение. Под воздействием высокочастотного пульсирующего тока значительной величины порошковое железо становится очень горячим.
МРР - порошковый молибденовый пермаллой, также известный как Мо-пермаллой. Мо-пермаллой (МРР) сердечники производят из сплава, состоящего из 2% молибдена, 81% никеля и 17% железа. Мо-пермаллой (МРР) тороиды изготавливаются с проницаемостью от 14 до 350. Это самый широкий диапазон проницаемостей для всех порошковых материалов. Мо-пермаллой (МРР) насыщается при 7 кГс и обладает самыми низкими потерями из всех порошковых материалов. У Мо-пермаллоя (МРР) самая лучшая температурная стабильность наряду с самым малым изменением проницаемости при малом и среднем уровне возбуждения. Высокое содержание никеля в Мо-пермаллое (МРР) делает его самым дорогим из всех порошковых сердечников, но его превосходные характеристики более чем компенсируют его стоимость.
Мо-пермаллой (МРР) наилучший материал для фильтров звуковой частоты, среднечастотных низкоуровневых резонансных контуров и сглаживающих дросселей в переключаемых источниках питания. Мо-пермаллой (МРР) сердечники можно использовать в мощных резонансных контурах, работающих в области насыщения на частотах до 3,5 кГц. При введении в насыщение на частотах выше этой выделяется слишком много тепла. Это самый лучший материал для трансформаторов тока в диапазоне 10 кГц - 1 МГц, особенно если необходимо выдерживать большие постоянные токи. Наиболее эффективное решение, из-за очень низких потерь на вихревые токи, при необходимости изолировать шину питания от коротких мощных пиков напряжения.
Сендаст был изобретен в Японии перед Второй мировой войной. Он состоит из 6% алюминия, 9% кремния и 85% железа. Тороиды из сендаста производятся с проницаемостями от 60 до 125 под торговой маркой Super-MSS. Свойства сендаста при подмагничивании постоянным током схожи с Мо-пермаллоем (МРР), а потери меньше, чем у порошкового железа, но больше, чем у Мо-пермаллоя (МРР). Из сендаста изготавливались высококачественные магнитные головки. MSS хорошо подходит для сетевых и выходных фильтров средних характеристик.
И хотя он слегка дороже порошкового железа, его значительно более низкие потери оправдывают разницу в цене. В переключаемых источниках питания, где потери не так критичны, Super-MSS (сендаст) обычно используют как замену Мо-пермаллою (МРР). Часто это - наилучший выбор, потому что Super-MSS (сендаст) стоит дешевле Мо-пермаллоя (МРР).
High Flux (HF) порошковые сердечники изготавливают из сплава 50% никеля и 50% железа. HF тороиды имеют проницаемость от 14 до 200. Сердечник из Hi-Flux (HF) может запасти в четыре раза больше энергии, чем сердечник МРР (Мо пермаллоя) или MSS (сендаста) такой же проницаемости и размеров, так как его практическое насыщение - 11 кГс. Hi-Flux (HF) стоит немного дешевле МРР (Мо-пермаллоя) и является самым лучшим выбором для применений, в которых требуется накопление максимальной энергии, а стоимость не имеет большого значения. Его потери значительно меньше, чем у порошкового железа, но больше, чем у МРР (Мо-пермаллоя) или Super-MSS (сендаста). Hi-Flux (HF) - лучший выбор для мощных низкочастотных резонансных контуров и дросселей, через которые должны протекать большие постоянные токи. Это делает возможным создание RFI фильтров для сетевых источников питания, которые могут удлинять импульсы выпрямителя и улучшать коэффициент мощности.
Ферриты являются керамическими материалами, изготовленными из окиси железа с добавлением окислов марганца, цинка или других металлов. Компоненты в виде порошков смешиваются, помещаются в форму и спекаются. В результате получается твердое, хрупкое стеклоподобное вещество. Обычно проницаемость имеет диапазон от 750 до 10000. Плотность потока насыщения - от 3 до 5 кГс. Ферриты можно производить в любой удобной форме - тороиды, Е - и I - образные сердечники, броневые сердечники и стержни.
Ферриты могут обладать самыми низкими потерями из всех широко применяемых материалов из-за их низкого остаточного намагничивания и высокого удельного сопротивления. Они - наилучший выбор для трансформаторов в диапазоне частот от 1 кГц до 1 Мгц. Они не очень хорошо подходят для высокочастотных применений, если не снабжены зазором. Это обусловлено большим влиянием температуры и уровня возбуждения на проницаемость и Q (добротность).
Обычно, удельное сопротивление ферритов в миллионы раз больше, чем у магнитомягких сплавов. Хотя это обуславливает самые низкие потери на вихревые токи из всех твердотельных материалов, все равно обмотка должна быть изолирована от сердечника. Кромки феррита, острые как бритва, легко нарушат изоляцию провода во время намотки.
Для предотвращения короткого замыкания во время намотки на ферритовые тороиды наносится париленовое или эпоксидное покрытие. Не смотря на то, что ферриты обладают достаточно высоким удельным сопротивлением, потери на вихревые токи иногда могут создавать проблемы. Это происходит в применениях с высоким напряжением на виток, таких как дроссели в низкочастотных цепях с высоковольтными импульсами. В этих случаях лучший выбор - МРР (Мо-пермаллой).
Формы сердечников
Тороиды являются самой эффективной магнитной формой и при этом самой дешевой в производстве. Для намотки большого количества витков необходимы специальные машины, что несколько корректирует их низкую цену в сторону повышения. В тороидах обычно зазоры не используют из-за сложности соединения двух секций вместе.
Е - и I - сердечники более дорогие в изготовлении из-за необходимости точного совмещения. Если они не точно совмещены, то при креплении они расколются. При необходимости зазор вводится стачиванием среднего стержня Е- сердечника. Иногда, для удвоения зазора, соединяются два сердечника. Катушки для таких сердечников наматывают с большой скоростью на недорогих машинах, что частично компенсирует высокую стоимость сердечников.
Наиболее дорогие в производстве - броневые сердечники. Их изготавливают в виде двух половин, которые должны очень точно подходить друг к другу. Сердечник почти полностью окружает катушку, за исключением небольших отверстий для выводов. Практически все магнитное поле катушки заключено внутри сердечника. Если сердечник заземлен, феррит, обладающий средней электропроводностью, действует так же хорошо, как электромагнитный экран. Таким образом, броневые сердечники экранированы лучше, чем все другие типы сердечников.
Броневые сердечники подвергаются перегреву, потому что их обмотка окружена материалом сердечника, который плохо проводит тепло и препятствует циркуляции воздуха. Как и для Е - сердечника один или оба центральных стержня могут быть сточены, чтобы обеспечить воздушный зазор. Однако при этом тепловое действие краевых эффектов на обмотку приводит к еще большему возрастанию температуры. У броневых сердечников с зазором для подстройки индуктивности могут быть винтовые сердечники в центральной части.
Воздушным зазором можно обеспечить как стабильность проницаемости ферритов, так и способность запасать значительные количества энергии. При снижении проницаемости ферриты способны выдерживать большие значения постоянного тока без насыщения. На высоких частотах для минимизации потерь на краевые эффекты необходимо использовать литцендрат.
В начале 1980-х Stackpole Carbon Company выпускала ферритовые тороиды с низкой проницаемостью для накопления энергии. Однако по неизвестным причинам производственная линия была ликвидирована.
Потери в сердечнике
Истинная стоимость потерь в сердечнике часто недооценивается конечным пользователем. Рассмотрим, например, сердечник, потери в котором составляют 1 Вт при стоимости электроэнергии 10 центов за кВт в час. За год непрерывной работы сердечник потратит 88 центов. Это тепло может принести пользу в Маренго, штат Иллинойс в январе, но абсолютно бесполезно в Финиксе, штат Аризона в июле. В последнем случае необходимо потратить дополнительный доллар на кондиционирование, чтобы выкачать наружу потраченную впустую энергию.
Когда размеры сердечника удваиваются, площадь поверхности увеличивается в четыре раза, а объем и потери возрастают в восемь раз. Рост температуры пропорционален отношению потерь в сердечнике к площади поверхности, то есть в больших сердечниках она больше в два раза. Сердечники с диаметром больше 3 дюймов (76,2 мм) могут потребовать принудительного воздушного охлаждения даже при умеренных уровнях потока.
Потери в сердечнике вызывают увеличение температуры обмотки. Сопротивление меди увеличивается на 0,4%/ о С. Таким образом, увеличение температуры на 30 о С из-за потерь в сердечнике, на 12% увеличивает потери в меди, что еще больше повышает температуру. Высокая температура сердечника также приводит к деградации изоляции обмотки и вызывает тепловые напряжения, которые могут привести к закорачиванию витков обмотки.
Большинство химических реакций примерно удваивают скорость с увеличением температуры на 10 о С. Механизм старения большинства электронных компонентов зависит от температуры и, таким образом, увеличение рабочей температуры на 10 о С сокращает срок службы вдвое. Растраченная впустую мощность повышает температуру внутри электронного оборудования, что приводит к снижению срока службы компонентов.
Избыточное тепло медленно окисляет и делает хрупкими паяные соединения и обугливает печатные платы. Долговременно воздействие высокой температуры на электролитические конденсаторы высушивает их и сокращает срок службы. Резисторы в условиях работы при повышенной температуре меняют свой номинал. Функционирование при повышенной температуре полупроводников приводит к перераспределению введенных в них примесей и увеличивает перетекание зарядов. Это перетекание может еще больше увеличить температуру полупроводника.
Для поддержания стабильности полупроводников при повышенной температуре окружающей среды необходимы более массивные и более дорогие радиаторы. Во многих случаях стоимость радиатора превышает экономию на сердечнике, работающем при повышенной температуре. Очень часто применение дорогих сердечников, температура которых при работе ниже, позволяет отказаться от вентилятора и снизить общую стоимость. Кажущаяся экономия в 1$ на стоимости сердечника может обернуться потерями 100$ если источник питания придется ремонтировать в полевых условиях.
На рис. 5 приведена тройная экспозиция правых половин петель гистерезиса порошковых сердечников из MPP (Мо-пермаллоя), Super-MSS (сендаста) и Hi-Flux. У сердечников из MPP (Мо-пермаллоя) и Super-MSS (сендаста) кривые почти идентичны, за исключением большего гистерезиса у MPP (Мо-пермаллоя). Насыщение этих сердечников происходит в районе 7 кГс. У порошковых сердечников из Hi-Flux гистерезис больше, чем у Super-MSS (сендаста) и насыщение происходит более плавно на уровне, большем 11 кГс. Потери для MPP (Мо-пермаллоя) и Super-MSS (сендаста) так малы, что их петли гистерезиса представляют практически прямую линию. Петлю гистерезиса Hi-Flux можно видеть, но она совсем не такая, как у порошкового железа на рис.4.
Акустический шум, производимый сердечниками из порошкового железа и феррита с зазором при измерениях на частоте 1 кГц достаточно неприятный. Hi-Flux шумит на 3дБ тише, а MPP (Мо-пермаллой) и Super-MSS (сендаст) - на 6 дБ. Но даже эти сердечники могут производить раздражающий шум при работе на частоте около 3 кГц при максимальных уровнях потока.
Измерение потерь в сердечниках
На рис. 6 приведены идеальные формы волн, соответствующие 4 мГн дросселю, введенному в насыщение прямоугольным сигналом с частотой 1 кГц. Когда ток втекает в индуктивность, запасенная в ней энергия пропорциональна значению индуктивности и квадрату тока. Когда ток уменьшается, индуктивность возвращает энергию в цепь. Энергия запасается при положительном напряжении, и ток увеличивается от нуля до максимума. Это период положительной мощности, так как энергия течет из источника в индуктивность.
Когда напряжение возбуждения внезапно становится отрицательным, энергия из индуктивности возвращается в источник. Мощность становится отрицательной, так как напряжение отрицательное, а ток положительный. Когда ток переходит через ноль и становится отрицательным, энергия начинает течь в индуктивность и мощность снова становится положительной. В этой точке и ток, и напряжение отрицательные.
Когда при следующем переключении напряжения напряжение возбуждения становится положительным, мощность снова становится отрицательной и энергия из индуктивности возвращается в источник. В этом случае напряжение положительное, а ток отрицательный. Наконец ток пересекает ноль в положительном направлении, и мощность становится положительной. Формой изменения мощности является пилообразная волна с частотой 2 кГц со смещением на 5 Вт по постоянному току из-за потерь в сердечнике. Для измерения таких малых потерь при ±400 Вт реактивной мощности необходим очень точный умножающий ваттметр.
В типовом переключаемом источнике питания удвоенная амплитуда тока пульсаций, протекающего через сглаживающий дроссель, зависит от размера применяемого сердечника. Уменьшение размеров сердечника с целью экономии средств приводит к увеличению тока пульсаций. Больший ток пульсаций вызывает больший нагрев из-за потерь на гистерезис, что делает необходимым применение конденсатора фильтра большей емкости. Наиболее экономически обоснованным является использование сердечника, обеспечивающего ток пульсаций около одной четверти от тока нагрузки.
Потери на гистерезис, вызванные током пульсации часто больше потерь в меди. Полезным показателем производительности индуктивности в переключаемом источнике питания является Q, измеренная на частоте 40 кГц. Это позволяет определить ESR индуктивности. Измерения Q были проведены для MPP (Мо-пермаллоя), Super-MSS (сендаста), Hi-Flux, порошкового железа и феррита. Уровни постоянного тока были 6, 6, 15, 13 и 3,5 А. Проницаемость порошковых сердечников равна 60. Q на частоте 40 кГц измерялась при двойной амплитуде 2А для порошковых сердечников и 1А для феррита. Сопротивление обмотки было около 0,18 Ом у порошковых сердечников и 0,28 Ом у феррита. Результаты измерений приведены в Таб.1.
Выходное напряжение (В)
Все сердечники тороидальные с диаметром 1,84 дюйма (46,7 мм), за исключением ферритового ЕС70/70G с зазором. Индуктивность 4,0 мГн. Ток пульсаций представляет собой треугольную волну с двойным размахом амплитуды, составляющим 33% от указанной во второй колонке таблицы.
В Таблице 2 приведены результаты сравнения сердечников для различных применений.
Тип сердечника | Обратные цепи | Сетевой фильтр | Мощные цепи | Дроссели фильтров | Прецизионные фильтры | Цена |
МРР (Мо пермаллой) | Хорошо | Плохо | Плохо | Лучше всех | Хорошо | Высокая |
Super-MSS (Сендаст) | Средне | Хорошо | Средне | Хорошо | Средне | Низкая |
Hi-Flux | Плохо | Лучше всех | Лучше всех | Средне | Плохо | Средняя |
Порошковое железо | Хуже всех | Средне | Хорошо | Хуже всех | Хуже всех | Самая низкая |
Феррит/лит-цендрат | Лучше всех | Хуже всех | Хуже всех | Плохо | Лучше всех | Самая высокая |
Трансформаторы и дроссели для импульсных источников питания
Основные характеристики
Основными электрическими характеристиками КИ являются индуктивность, омическое сопротивление обмотки, максимальный рабочий ток и величина потерь в сердечнике. Кроме того, немаловажными характеристиками являются габаритные размеры и вес, а также цена ; и трудоемкость изготовления.
Требования к КИ варьируются в зависимости от конкретного применения. Например, для многих понижающих преобразователей и для большинства помехоподавляющих фильтров индуктивность дросселя может быть выбрана большей, чем требуется по расчету. При этом качество работы преобразователя или фильтра не ухудшается, а, напротив, становится лучше. В то же время дроссели для инвертирующих и повышающих преобразователей должны иметь определенную, довольно строго заданную расчетом величину индуктивности. В таких случаях существенное отклонение индуктивности примененной КИ от требуемой — как ее уменьшение, так и увеличение — приводит к нежелательным режимам работы ИИП, излишним потерям и перегрузкам полупроводниковых приборов.Аналогичная картина наблюдается и для трансформаторов. В некоторых применениях, таких как двухтактные преобразователи и однотактные преобразователи с передачей энергии «на прямом ходе ключа», индуктивность первичной обмотки трансформатора не является критичной и всегда может быть увеличена или при соблюдении некоторых условий даже уменьшена. В то же время однотактные преобразователи «на обратном ходе ключа», которые по своей сути являются инвертирующими преобразователями, весьма чувствительны к величине индуктивности трансформатора. В этом случае трансформатор фактически является видоизмененным дросселем. Что касается максимального рабочего тока и сопротивления обмоток, то здесь предела улучшению нет: практически любой дроссель или трансформатор можно успешно заменить на дроссель или трансформатор с большим максимально допустимым значением рабочего тока и меньшим сопротивлением обмоток.
Индуктивность
Индуктивность КИ рассчитывается по формуле:
L=AL*N2(мкГн), (1)
где AL — справочный параметр сердечника, мкГн;
N — количество витков в обмотке.
Для кольцевого сердечника с замкнутым магнитным сердечником без зазора параметр АL легко вычислить самостоятельно по формуле:
Найти, сколько витков должна иметь обмотка для получения заданной индуктивности, можно по формуле:
Легко видеть, что обе последние формулы являются простыми преобразованиями формулы (1).
Насыщение сердечника
В случае когда через катушку с сердечником протекает большой ток, магнитный материал сердечника может войти в насыщение. При насыщении сердечника его относительная магнитная про-
где Вмакс — табличное значение, вместо которого можно использовать значение 300 мТ для любых силовых ферритов.
Для сердечников с зазором удобно подставить сюда выражение (4). После сокращений получаем:
Результат получается, на первый взгляд, довольно парадоксальный: величина максимального тока через КИ с зазором определяется отношением размера зазора к количеству витков обмотки и не зависит от размеров и типа сердечника. Однако этот кажущийся парадокс объясняется просто. Феррито-вый сердечник настолько хорошо проводит магнитное поле, что все падение напряженности магнитного поля приходится на зазор. При этом величина потока магнитной индукции, одинаковая и для зазора, и для сердечника, зависит лишь от ширины зазора, тока через обмотку и количества витков в обмотке и не должна превышать 300 мТ для обычных силовых ферритов.
Для ответа на вопрос, какой величины суммарный зазор g надо ввести в сердечник, чтобы он выдержал без насыщения заданный ток, преобразуем выражение (10) к следующему виду:
Потери в проводе обмотки
Трансформаторы
Потери в сердечнике
Всего комментариев: 1
Автор: Григорий М Добавлено 4 октября, 2020 в 21:53Читайте также: