Химический состав цемента зуба
Биохимия полости рта
Рекомендовано Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов, обучающихся по специальности 040400 – стоматология (УМО-216 от 13.04.04)
Пособие составлено сотрудниками кафедры биологической химии с курсами биоорганической химии и клинической биохимии ГОУ ВПО Читинской государственной медицинской академии заведующим кафедрой, профессором, д.м.н. Б.С.Хышиктуевым и профессором, д.м.н. Н.А.Хышиктуевой.
Рецензенты: заведующий кафедрой биохимии Московского медицинского стоматологического университета, профессор, д.м.н. Т.П.Вавилова, заведующий кафедрой биохимии Российской медицинской академии последипломного образования, профессор, д.м.н. Г.А.Яровая.
I. Биохимия твердых (минерализованных) тканей зуба
II. Биохимия жидкостей полости рта, зубной камень и зубной налет
Общая характеристика и особенности химического состава зубного налета
III. Метаболические функции фтора, кальция и фосфора в ротовой полости
IV. Патология: биохимический аспект
Гомеостаз полости рта во многом определяется структурно-функциональным состоянием тканей и микроорганизмов ротовой полости. Фундаментальные и прикладные исследования последнего десятилетия в области стоматологии расширили представления о биохимических аспектах твердых тканей зуба, слюны, десневой жидкости, метаболических особенностях жизнедеятельности микроорганизмов и ксенобиотиков в норме и патологии.
В настоящем учебном пособии освещены вопросы биохимии полости рта в физиологических условиях и кратко изложены сведения о биохимических нарушениях, при наиболее часто встречающихся патологических состояниях полости рта. Данное руководство составлено в соответствии с рекомендуемой программой ВУНМЦ МЗ РФ по биологической химии для студентов стоматологического факультета по разделу «Биохимия тканей зуба», «Биохимия ротовой жидкости» и «Метаболические функции фтора». Авторы надеются, что настоящее пособие будет интересно и полезно не только студентам, но и практическим врачам-стоматологам и с благодарностью примут все пожелания и замечания.
I. Биохимия тканей зуба
В составе зуба выделяют минерализованные и неминерализованные ткани. К первым относятся эмаль, дентин и цемент. Вообще в организме человека в норме имеется четыре вида минерализованных тканей: эмаль, дентин, цемент и кость, которые отличаются по химическому составу и происхождению. Последние три происходят из стволовых клеток мезодермы, тогда как эмаль является производным эктодермы. В их химическом составе преобладают неорганические компоненты, а также присутствуют органические соединения и вода (табл.1).
Мягкая (неминерализованная) ткань в составе зуба одна, она называется пульпой и находится в полости коронки и корня зуба.
Химический состав эмали, дентина и кости (в % от массы)
Неорганический компонент эмали. Мельчайшими структурными единицами эмали являются кристаллы апатитоподобного вещества, формирующие эмалевые призмы. Минеральную основу составляют кристаллы апатитов и восьмикальциевый фосфат - Са8Н2(РО4)6*5Н2О; формула основного гидроксиапатита - Са10(РО4)6(ОН)2, в этом случае молярное соотношение Са/Р равно около 1,67. Однако, как это установлено в настоящее время, соотношение этих компонентов может изменяться как в сторону уменьшения(1,33), так и в сторону увеличения (2,0). При соотношении Са/Р 1,67 разрушение кристаллов происходит при выходе 2 ионов Са 2+ , при соотношении 2,0 гидроксиапатит способен противостоять разрушению до замещения 4 ионов Са, тогда как при соотношении 1,33 его структура разрушается. По современным представлениям данный параметр можно использовать для оценки состояния эмали зуба. Гидроксиапатит имеет гексагональную форму (рис. 1). Длинная ось кристаллов-призм расположена по основному направлению давления на кость или зуб. Каждый кристалл покрыт гидратной оболочкой около 1 нм. Связанная вода, образующая эту оболочку, составляет примерно 3,0-3,3% массы эмали. Кроме связанной воды (гидратная оболочка) в эмали имеется свободная вода, располагающаяся в микропространствах. Общий объем воды в эмали составляет 3,8%. Первое упоминание о жидкости, находящейся в твердых тканях зуба, относится к 1928 году. В дальнейшем стали дифференцировать зубную жидкость, которая находится в дентине от эмалевой жидкости, заполняющей микропространства, объем которых составляет 0,1-0,2% от объема эмали. В исследованиях на удаленных зубах человека с использованием специальной методики подогрева показано, что через 2-3 часа после начала опыта на поверхности эмали образуются капельки «эмалевой жидкости». Движение жидкости обусловлено капиллярным механизмом, а по жидкости диффундируют молекулы и ионы. Эмалевая жидкость играет важную биологическую роль не только в период развития эмали, но и в сформированном зубе, обеспечивая ионный обмен.
Рис. 1. Строение молекулы гидроксиапатита
Состояние эмали зуба во многом определяется соотношением Са/Р как элементов, составляющих основу эмали зуба. Это соотношение непостоянно и может изменяться под воздействием ряда факторов. Здоровая эмаль молодых людей имеет более низкий коэффициент Са/Р, чем эмаль зубов взрослых; этот показатель уменьшается также при деминерализации эмали. Более того, возможны существенные различия соотношения Са/Р в пределах одного зуба, что послужило основанием для утверждения о неоднородности структуры эмали зуба, и, следовательно, о неодинаковой подверженности различных участков эмали поражению кариесом. В кристаллической решетке гидроксиапатита имеются вакантные места, поэтому даже в уже сформированном кристалле при химических и физических воздействиях возможныизоморфные замещения. При этом любое проникновение веществ на поверхность или внутрь кристалла связано с преодолением гидратной оболочки. Результатом подобных явлений и образования вакансий является варьирование свойств кристаллов, что выражается в изменении проницаемости эмали, ее резистентности к растворению, адсорбционных свойств. Однако, только некоторые ионы могут включаться в структуру апатитов. Если общую формулу апатита представить как А10В6Х2, то по положению А могут включаться ионы Са 2+ , Mg 2+ , Ва 2+ , Cr 2+ , Sr 2+ и другие, по положению В - РО4 3- и другие, по положению Х - НО - , F - , Cl - и другие.
Примером реакции изоморфного замещения является следующая:
Известно, что приведенное выше взаимодействие является неблагоприятным, так как снижает резистентность эмали к действию кариесогенных факторов.
Замещение в гидроксиапатитах ионов Са на Sr сопровождается формированием стронциевых апатитов - Ca9Sr(РО4)6(ОН)2. При этом стронций, поступая в избыточном количестве, хотя и вытесняет из кристаллической решетки кальций, но сам в ней не удерживается, что приводит к порозности костей. Этот эффект усугубляется недостатком кальция. В результате проводимых как в нашей стране, так и за рубежом, исследований установлено, что микроэлементы в эмали располагаются неравномерно. В наружном слое отмечается большое содержание фтора, свинца, цинка, железа при меньшем содержании в этом слое натрия, магния, карбонатов. Равномерно по слоям распределяются, как правило, стронций, медь, алюминий, калий.
Такие изменения характерны для болезни Кашина-Бека (“уровская болезнь”), которая поражает людей, преимущественно в раннем детстве, живущих в долине реки Уров Читинской и Амурской областей. Страдание начинается с болей в суставах, затем возникает поражение костной ткани, размягчение эпифизов, нарушаются процессы окостенения. В эндемичных районах в почве и воде содержится в 2 раза меньше кальция и в 1,5-2 раза больше стронция, чем в норме. В настоящее время существует и другая теория патогенеза “уровской болезни”, согласно которой патология развивается в результате дисбаланса фосфатов в окружающей среде.
Изоморфное замещение в гидроксиапатите на фтор приводит к образованию гидроксифторапатитов и фторапатитов - Са10(РО4)6F(ОН) и Са10(РО4)6F2:
Фторапатиты, которых в норме в эмали около 0,66%, обладают значительно большей резистентностью к растворению в кислой среде, чем гидроксиапатиты. Было установлено, что при замещении фтором даже одной из 50 гидроксильных групп растворимость эмали резко понижалась. Именно с этим связано профилактическое действие небольших концентраций фтора. Однако при высоком его содержании образуется фторид кальция - СаF2 - практически нерастворимое соединение, которое быстро исчезает с поверхности зубов в результате выщелачивания:
В связи с этим не следует применять высокие концентрации фторидов, особенно в кислых растворах.
В эмали зуба также содержатся хлорапатит - Са10(РО4)6Cl2 (4,4%) и карбонатапатиты - Са10(РО4)5СО3(ОН)2. Они составляют 19% и их количество увеличивается при употреблении пищи, богатой углеводами. Рост концентрации карбонатапатитов грозит снижением резистентности эмали и способствует развитию кариозного процесса.
Большая часть кристаллов гидроксиапатита в эмали ориентирована и упорядочена в виде сложных образований - эмалевых призм. Элементарная ячейка гидроксиапатита (структура 1 порядка) имеет молекулярную массу около 1000, в составе кристалла гидроксиапатита (структура 2 порядка) находится около 2500 таких ячеек (М=2 500 000). Эмалевая призма (структура 3 порядка) в свою очередь составлена из тысяч и миллионов кристаллов. Эмалевые призмы начинаются у эмалево-дентинной границы и идут к поверхности эмали, многократно изгибаясь в виде спирали, которые собраны в пучки (структура 4 порядка).
Органические соединения эмали. В процентах сухой массы они составляют: белки – 0,25-0,45%, липиды – 0,6%, цитраты – 0,1%. Наибольшее количество протеинов содержится в области эмалево-дентинного соединения. Белки эмали нельзя причислить к группе коллагеновых, так как в протеинах эмали нет гидроксипролина, а количество пролина составляет 166-187 аминокислотных остатков на 1000.
В эмали имеются белки, участвующие в амелогенезе - амелогенины и не являющиеся амелогенинами (энамелины). Амелогенин (первая группа белков эмали) представлен 5 соединениями с молекулярной массой 25; 15; 9,5; 7,5 и 6 кДа. Энамелины (вторая группа белков эмали) также являются гетерогенной фракцией и состоят из 5 классов с молекулярной массой, равной 72, 56, 42, 30, 21 кДа. Белки этого семейства способны агрегироваться и дезагрегироваться. Оба класса протеинов относятся к сложным – гликофосфопротеидам, причем амелогенины содержат до 75% органического фосфата, а энамелины – 25%.
Основой формирования и функционального построения эмали служит ее белковая матрица, элементарной функциональной единицей которой является кальций-связывающий белок эмали (КСБЭ). Последний способен к олиго- и полимеризации посредством кальциевых мостиков с образованием трехмерной белковой сетки, нерастворимой в нейтральной среде. Эта структура в дальнейшем выступает в роли центров кристаллизации, обеспечивая упорядоченность и регулярность минерализации, на этапах которой мы подробно остановимся ниже.
По мере созревания меняется белковый профиль эмали. На начальном этапе формирования этой ткани соотношение амелогенинов и энамелинов составляет 9:1, а среди аминокислот превалируют такие как пролин и гистидин; в зрелой наряду с уменьшением количества белка оно становится 1:1 и в аминокислотном составе начинают преобладать аспартат, серин, глицин и аланин.
Изменение белкового состава эмали связано с различием функций, осуществляемых протеинами на разных стадиях формирования зуба: вначале с транспортом и депонированием минеральных компонентов, а затем с инициацией минерализации. Еще в эмали обнаружен уникальный гидроксипролинсодержащий гликофосфопептид с Мr=3 кДа, он прочно связан с гидроксиапатитом и возникает в результате деградации коллагеноподобного белка зуба или попадает в процессе выделения его из дентина.
Третья группа белков эмали – это растворимые белки с Мr 20 кДа. Однако они не обладают сродством к минеральной фазе, не способны к образованию комплексов с кальцием и имеют менее регулярную структуру. Роль этих белков в эмали и в процессе минерализации неясна. Вполне вероятно, что они являются остаточными белками “эмалевого органа”.
Процессы минерализации. До восьмого месяца развития плода происходит формирование зачатка зуба, а к моменту рождения ребенка образуется зрелая эмаль.
Начало минерализации совпадает с разрушением полипептидов эмалевого матрикса.
I этап – протеолиз высокомолекулярных белков до низкомолекулярных с помощью катепсинов (тканевых протеаз) и плазмина.
II этап – обогащение матрикса ионами кальция и неорганическим фосфатом. Источником первого является преимущественно цитрат (см. ниже), а второй поступает за счет активации щелочной фосфатазы, которая гидролизует органические эфиры фосфорной кислоты.
III этап – фосфорилирование остатков серина в низкомолекулярных белках в результате действия протеинкиназы (рис. 2).
IV этап – с фосфорилированными остатками серина реагируют ионы кальция и неорганического фосфата (рис. 2). В конечном итоге формируется первичная ячейка гидроксиапатита (первичный кристалл).
Рис. 2. Схема некоторых этапов минерализации.
Дальнейшее формирование решетки протекает по типу эпитаксии, представляющей собой рост последующих кристаллов на базе предыдущего. При этом вновь образующиеся кристаллы ориентированы по первичному и не связаны с белком.
Наличие большого количества глутамата и аспартата в эмалевых белках и других протеинах минерализованных тканей позволяет присоединять кальций непосредственно к карбоксильной группе этих аминокислот. Кроме того, лизин коллагена способен также взаимодействовать с неорганическим фосфатом путем образования фосфамидной связи (рис.3). В костной ткани преципитация кальция и фосфата возможна не только на белках, но и на углеводах и липидах.
Амелогенез во многом определяется белковой матрицей. Ингибирование протеолиза, согласно гипотезы Robinson и Kirkham (1984), способствует сохранению белка и нарушает амелогенез, что может быть причиной гипоплазии эмали и флюороза.
После прорезывания зубов процесс созревания эмали продолжается и он тесно связан с поступлением минеральных компонентов через приобретенную пелликулу зуба из смешанной слюны.
Рис. 3. Возможные варианты формирования первичного кристалла.
С возрастом происходит накопление Са 2+ в поверхностном слое эмали, при этом меняется соотношение Са/Р с 1,51 до 1,86. Это процесс динамичный и зависит от анатомической принадлежности зуба, места его расположения, топографии участка зуба и других факторов. Так, наиболее быстро созревает эмаль в области режущих краев и бугров (в течение 4-6 месяцев после прорезывания). От степени созревания эмали в определенной мере зависит кариесрезистентность зубов.
Регуляция процессов минерализации. Для минерализации костей, твердых тканей зуба необходимо поддержание определенных концентраций ионов кальция и неорганического фосфата в плазме крови, слюне и надкостнице. В организме взрослого человека содержится в среднем 1000 г кальция. Основным его депо в организме (99%) являются кости. В костях около 99% кальция присутствует в виде малорастворимой формы кристаллов гидроксиапатита. Другой фонд кальция – это кальций плазмы крови. В плазму крови кальций поступает из кишечника (с водой и пищей) и из костной ткани (в прцессе резорбции). Нормальное протекание процессов минерализации обеспечивается тем, что концентрация Са 2+ в крови варьирует в очень узких пределах (2,12-2,60 ммоль/л – у взрослых; 2,74-3,24 ммоль/л – у детей), более широкие колебания характерны для цифр неорганического фосфата (0,64-1,29 ммоль/л – у взрослых; 1,29-2,26 ммоль/л – у детей). В механизм регуляции гомеостаза этих ионов включены три гормона – паратироидный (паратгормон), кальцитонин и кальцитриолы (1,25(ОН)2D3 и 24,25(ОН)2D3).
Паратироидный гормон (ПТГ) продуцируется околощитовидными железами и по механизму действия является антагонистом тирокальцитонина. Паратгормон – это полипептид, состоящий из 84 аминокислотных остатков, синтезируется в виде препрогормона (115 аминокислот). От последнего в результате частичного гидролиза в эндоплазматической сети отщепляется 25 аминокислотных остатков и образуется прогормон; далее в комплексе Гольджи от него отщепляется гексапептид и образуется активный гормон. Паратгормон упаковывается и хранится в секреторных гранулах (везикулах). В крови он транспортируется в связанном с белком состоянии. Основной стимул секреции данного гормона – низкий уровень Са 2+ во внеклеточной жидкости (менее 2,0 ммоль/л). Вид рецепции данного гормона трансмембранный, через ц-3`,5`-АМФ. Органы-мишени: костная ткань, почки и кишечник. В клетках почек и костной ткани локализованы специфические рецепторы, которые взаимодействуют с паратгормоном, в результате чего инициируется каскад событий, приводящий к активации аденилатциклазы. Внутри клеток органов мишеней возрастает концентрация молекул цАМФ, действие которых стимулирует мобилизацию ионов кальция из внутриклеточных запасов. Ионы кальция активируют киназы, которые фосфорилируют особые белки, индуцирующие транскрипцию специфических генов.
Биологические эффекты. В костной ткани рецепторы ПТГ локализованы на остеобластах и остеоцитах, но не обнаружены на остеокластах. При связывании паратгормона с рецепторами клеток-мишеней остеобласты начинают усиленно секретировать инсулиноподобный фактор роста 1 и цитокины. Эти вещества стимулируют метаболическую активность остеокластов. В частности, ускоряется образование ферментов, таких как щелочная фосфатаза и коллагеназа, которые воздействуют на компоненты костного матрикса, вызывают его распад, в результате чего происходит мобилизация Са и фосфатов из кости во внеклеточную жидкость.
В почках ПТГ стимулирует реабсорбцию кальция в дистальных извитых канальцах и тем самым снижает экскрецию кальция с мочой, уменьшает реабсорбцию фосфатов.
Кроме того, паратгормон способствует гидроксилированию 25-гидроксихолекаль-циферола в кальцитриол (1,25 (ОН)2D3). Последний усиливает всасывание Са в кишечнике.
Таким образом, паратгормон восстанавливает нормальный уровень ионов Са во внеклеточной жидкости как путем прямого воздействия на кости и почки, так и действуя опосредованно (через стимуляцию синтеза кальцитриола) на слизистую оболочку кишечника, увеличивая в этом случае эффективность всасывания Са. Снижая реабсорбцию фосфатов из почек, паратгормон способствует уменьшению концентрации фосфатов во внеклеточной жидкости.
Кальцитриолы (1,25(ОН)2D3 и 24,25(ОН)2D3) оказывают воздействие на тонкий кишечник, кости и почки. Подобно другим стероидным гормонам, витамин D связывается с внутриклеточным рецептором клетки-мишени. Образуется комплекс гормон-рецептор, который взаимодействует с хроматином и индуцирует транскрипцию структурных генов, в результате чего синтезируются белки, опосредующие действие кальцитриола.
Так, в клетках кишечника кальцитриол индуцирует синтез Са-переносящих белков, которые обеспечивают всасывание ионов кальция и фосфатов из полости кишечника в эпителиальные клетки кишечника и далее транспорт из клетки в кровь, благодаря чему концентрация ионов кальция во внеклеточной жидкости поддерживается на уровне, необходимом для минерализации органического матрикса костной ткани.
В почках кальцитриол стимулирует реабсорбцию ионов кальция и фосфатов. При недостатке витамина D нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в органическом матриксе костной ткани, что приводит к развитию рахита и остеомаляции. Обнаружено также, что при низкой концентрации ионов Са кальцитриол способствует мобилизации кальция из костной ткани. Кальцитриол способен также усиливать действие паратгормона на реабсорбцию кальция в почках.
Кальцитонин - полипептид, состоящий из 32 аминокислотных остатков с одной дисульфидной связью. Гормон секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желез в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации Са и уменьшается при снижении концентрации Са в крови. Кальцитонин – функциональный антагонист паратгормона. Он ингибирует (через ц-3,5-АМФ) высвобождение Са из кости, снижая активность остеокластов. Кроме того, кальцитонин подавляет канальцевую реабсорбцию ионов кальция в почках, тем самым стимулируя их экскрецию почками с мочой. Скорость секреции кальцитонина у женщин сильно зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает ускорение мобилизации кальция из костной ткани, что приводит к развитию остеопороза.
Паротин – гормон белковой природы с молекулярной массой 100 кДа, вырабатывается в околоушных слюнных железах. Впервые выделен из бычьих околоушных желез. Белки, сходные с паротином, выделены также из подчелюстных слюнных желез (S-паротин), слюны (паротин А, В и С), крови, мочи. Все эти соединения способствуют развитию и росту мезенхимальных тканей, усиливают пролиферацию и кальцинацию дентина зуба. Паротин снижает содержание кальция в крови за счет стимуляции его поступления в ткани зуба, наряду с фосфатом и натрием.
В регуляции роста кости то или иное участие принимают почти все другие гормоны, медиаторы и модуляторы. Простагландины, особенно ПГЕ1, снижают фосфатуритическую реакцию клеток почечных канальцев на паратгормон. Глюкокортикоиды необходимы для роста костей. В физиологических концентрациях они стимулируют обмен веществ в костной ткани, повышая чувствительность клеток к паратгормону и кальцитриолам. Инсулин активирует остеобласты и всасывание кальция в кишечнике. Поэтому при сахарном диабете I типа нарушается рост скелета и минерализация костей. Йодтиронины (Т3 и Т4) также необходимы для нормального роста костей. При их избытке активируются остеокласты и возникает гиперкальцемия. Эстрогены и андрогены принимают участие в механизмах бурного роста в пубертатном периоде. В детстве и в период полового созревания они обеспечивают преобладание процессов костеобразования над резорбцией.
Процессы минерализации находятся также под контролем некоторых витаминов.
Витамин С способствует созреванию коллагена через образование гидроксипролина. Зрелый протеин способен связывать ионы кальция и фосфатов, формируя кристаллы гидроксиапатита. Витамин А влияет на скорость биосинтеза гликозаминогликанов – одного из органических компонентов дентина и цемента. Из холестерола в коже под воздействием ультрафиолетовых лучей синтезируется провитамин D (кальцитриол).
Функции эмали зуба. Эмаль – это бессосудистая и самая твердая ткань организма. Кроме того, эмаль остается относительно неизменной в течение всей жизни человека. Указанные свойства объясняются функцией, которую она выполняет – защищает дентин и пульпу от внешних механических, химических и температурных раздражителей. Только благодаря этому зубы выполняют свое назначение – откусывают и измельчают пищу. Структурные особенности эмали приобретены в процессе филогенеза.
Явление проницаемости эмали зуба осуществляется благодаря омыванию эмали снаружи ротовой жидкостью, а со стороны пульпы – тканевой и наличию пространств в эмали, заполненных жидкостью. Возможность проникновения в эмаль воды и некоторых ионов известна с конца прошлого и начала нынешнего столетия. Так, C.F.Bedecker (1996) утверждал, что зубная лимфа может проходить через эмаль, нейтрализуя молочную кислоту и постепенно увеличивая плотность за счет содержащихся в ней минеральных солей.
В настоящее время проницаемость эмали изучена довольно подробно, что позволило пересмотреть ряд ранее существовавших представлений. Если считалось, что вещества в эмаль поступают по пути: пульпа – дентин – эмаль, то в настоящее время не только установлена возможность поступления веществ в эмаль из слюны, но и доказано, что этот путь является основным. Эмаль проницаема в обоих направлениях: от поверхности эмали к дентину и пульпе и от пульпы к дентину и поверхности эмали. На этом основании эмаль зуба считают полупроницаемой мембраной. Некоторые авторы считают, что проницаемость – это главный фактор созревания эмали зубов после прорезывания.
Цемент зуба: строение
Цемент зуба (cementum) – это высокоминерализованная ткань, напоминающая по своей структуре грубоволокнистую кость, которая тонким слоем покрывает корень зуба (вплоть до его шейки). Но в отличие от костной ткани – цемент корня не подвержен постоянной перестройке, он не имеет сосудов, а его трофика осуществляется посредством обычной диффузии питательных веществ, растворенных в основном аморфном веществе в составе периодонта.
Основная функция цемента заключается в формировании связочного аппарата зуба (периодонтального прикрепления), которое удерживает зуб в альвеоле, а также способствует перераспределению жевательного давления с зуба – на альвеолярную кость. Напомним, что периодонтальные волокна начинают расти одновременно – как со стороны корневого цемента, так и со стороны компактной пластинки альвеолы. Далее при помощи незрелого коллагена (проколлагена) в центре периодонтальной щели – концы этих волокон связываются вместе, формируются пучки волокон.
Цемент корня зуба: схема и фото
Слой цемента присутствует только на зубах человека, а также зубах других млекопитающих. В области шейки зуба толщина цемента меньше – от 20 до 50 мкм, в то время как в области верхушки корня – от 100 до 150 мкм. Думаю вам знакомо, что «вторичный дентин» на протяжении всей жизни продуцируется одонтобластами, и вот точно также в течение жизни происходит и постоянное образование цемента на поверхности корня. И поэтому, если вы доживете до пенсионного возраста, то цемент ваших зубов скорее всего успеет – как минимум утроить свою толщину (рис.3).
Цемент корня зуба: строение
Цемент по химическому составу и прочности близок к грубоволокнистой костной ткани. Неорганические компоненты в составе цемента составляют примерно 65% – в основном это фосфат кальция (в виде кристаллов гидроксиапатита или аморфных кальций-фосфатов) и карбонат кальция. Органические компоненты составляют около 23%, и они практически полностью представлены коллагеном; плюс около 12% воды.
Цемент подразделяют на 2 формы – на первичный (бесклеточный) и вторичный (клеточный). Слой первичного цемента выстилает дентин всей поверхности корня зуба, и в свою очередь уже поверх него будет располагаться слой вторичного цемента. Однако, этот так называемый вторичный «клеточный цемент» будет покрывать уже не всю поверхность корня, а только его апикальную треть + у многокорневых зубов еще и область бифуркации/ трифуркации корней (рис.4).
Слои цемента (электронная микроскопия) –
Клеточный и бесклеточный цемент (гистология) –
1) Первичный (бесклеточный) цемент –
Первичный цемент покрывает весь корень зуба. Он не содержит клеток, и состоит только из обызвествленного межклеточного вещества, в состав которого входят коллагеновые волокна и основное аморфное «склеивающее» вещество. Коллагеновые волокна этого слоя цемента отличаются равномерной минерализацией, и часть из них имеет продольное направление – по отношению к поверхности корня, а часть – перпендикулярное (радиальное) направление. Последние называют «шарпеевскими волокнами», и они имеют очень важное значение для фиксации зуба в альвеоле.
2) Вторичный (клеточный) цемент –
Вторичный цемент образуется после прорезывания зуба, и он покрывает уже не всю поверхность корня, а только апикальную его треть + область фуркаций многокорневых зубов. Он может располагаться либо поверх первичного цемента, либо напрямую прилежать к дентину корня. Вторичный цемент состоит преимущественно из клеток (цементоцитов и цементобластов), а также из межклеточного вещества, которое в свою очередь состоит – из основного аморфного вещества и хаотично направленных коллагеновых волокон.
- Цементоциты (рис.5-6) – лежат на поверхности цемента в особых лакунах (полостях) и по своему строению они очень похожи на цементоциты костной ткани. Цементоциты имеют длинные отростки, и там где клеточный цемент напрямую прилежит к поверхности дентина – отростки цементоцитов могут напрямую контактировать с дентинными трубочками. При образовании новых слоев цемента – цементоциты внутренних слоев постепенно гибнут, образуя в цементе пустые лакуны.
- Цементобласты – эти клетки являются «строителями цемента», т.е. обеспечивают отложение все новых его слоев. Отложение цемента цементобластами происходит в течение всей жизни человека, и поэтому толщина цемента в области верхушек корней – увеличивается к концу жизни в несколько раз.
Цементоциты в вторичном цементе (гистология) –
Рис.6 (обозначения), где 1 – цементоцит, 2 – дентинные трубочки, 3 – контакты отростков цементоцитов с дентинными трубочками.
3) Коллагеновые волокна –
Самой важной частью коллагеновых волокон цемента являются так называемые «шарпеевские волокна». Они являются терминальными участками волокон периодонтального прикрепления зуба со стороны цемента. На рис.7 вы можете увидеть гистологический препарат, на котором видно, что радиальные коллагеновые волокна периодонтальной щели и цемента корня зуба – являются «единым целым».
Соединение периодонта и цемента корня зуба –
Раньше считалось, что радиальные волокна периодонта (которые с одной стороны фиксируются к компактной пластинке альвеолы, а с другой – к цементу корня) – являются единым целым. Но современные исследования свидетельствуют, что это не совсем верно. Терминальные участки зубо-альвеолярных волокон периодонта начинают формироваться обособленно друг от друга: одна часть – со стороны цемента корня зуба, а другая часть – со стороны костной пластинки альвеолы.
Резюме :
Бесклеточный (первичный) | Клеточный (вторичный) | |
локализация | – прилежит к дентину, – покрывает корень. | – покрывает бесклеточный цемент в области апикальной трети корня и области фуркации многокорневых зубов. |
строение | – коллагеновые волокна (продольное и радиальное расположение), – аморфное вещество, – линии роста расположены близко друг к другу. | – цементоциты в лакунах (их отростки анастомозируют друг с другом), – коллагеновые волокна (хаотичное направление), – аморфное вещество, – линии роста расположены сравнительно далеко друг от друга. |
Цемент зуба: гистология
Ниже на видео 1 вы можете увидеть гистологию тканей зуба в потрясающем разрешении. На видео 2 лучшая лекция по гистологии цемента, которую вы можете услышать. Видео на английском языке, но при желании можно включить субтитры, и далее в настройках выбрать перевод с английского на русский.
Топография цемента в области шейки зуба –
Существует 3 варианта соединения цемента и эмали зуба. Оно может быть либо «стык в стык», либо цемент может немного заходить на эмаль, либо может присутствовать полоска обнаженного дентина (рис.8). Исследования показали, что эмаль и цемент граничат «стык в стык» – только в 30% случаев. При этом 60% зубов имеют наслоение цемента на край зубной эмали (рис.9), а полоска обнаженного дентина встречается в 10% случаев.
Варианты эмалево-цементной границы (схема и гистология) –
Рис.8, где 1 – эмаль, 2 – дентин, 3 – цемент, и варианты соединения эмали и цемента (I – цемент частично заходит на зубную эмаль; II – цемент стыкуется с эмалью, III – цемент не доходит до эмали зуба).
Функции цемента корня зуба –
1) Защитная функция –
содержание в цементе неорганических компонентов достигает 70%, что делает его прочным к механическим нагрузкам. Следовательно, одной из его функций будет защита дентина корня от повреждающего воздействия.
2) Участие в образовании периодонта –
формирование волокон периодонта происходит одновременно как со стороны цемента корня зуба, так и со стороны костной пластинки альвеолы. По мнению ряда авторов – в дальнейшем эти коллагеновые волокна сплетаются друг с другом посредством незрелого коллагена (проколлагена), превращая их в единое целое. Глубина погружения волокон периодонта в цемент корня зуба составляет от 3 до 5 μ.т.
3) Фиксирующая (удерживающая) –
цемент корня зуба вместе с компактной пластинкой альвеолы и волокнами периодонта – обеспечивает фиксацию зуба в альвеоле.
4) Компенсаторная функция –
при уменьшении длины зуба в результате физиологического стирания эмали – происходит усиленная выработка цемента в области верхушки корня зуба. В результате зуб как бы выталкивается из альвеолы в полость рта, и таким образом увеличивается размер клинической коронки зуба. Особенно это становится заметным у пациентов пожилого возраста.
5) Участие в репаративных процессах –
например, при устранении причины резорбции корня может произойти его частичное восстановление. Либо при наличии трещины корня зуба может произойти образование цемента между фрагментами, что может привести к устранению дефекта.
Причины дополнительного образования цемента –
При пародонтите и хроническом периодонтите, при стирании эмали на окклюзионных поверхностях, при повышении нагрузки на зуб, а также при отсутствии зуба-антагониста – происходит интенсивное отложение цемента в области апикальной трети корня (при этом формируется гиперцементоз, рис.3). Также к этому могут приводить и травмы корня зуба, а также ортодонтическое лечение.
Кроме того выделяют еще такое образование как «цементикль». Это не что иное, как состоящее из цемента образование округлой формы, расположенное в периодонте. Они возникают вследствие минерализации микрососудов в области островков эпителиальных клеток Маляссе.
Развитие цемента (цементогенез) –
Образование цемента происходит в два этапа. На 1 этапе происходит синтез органического матрикса (цементоида или первичного цемента). На 2 этапе происходит минерализация цементоида – с образованием вторичного цемента. Давайте рассмотрим, как все это происходит.
Сначала клетки зубного сосочка (в результате индуцирующего влияния эпителиального влагалища) – дифференцируются в одонтобласты корня, которые и образовывают дентин корня. Далее цементобласты зубного мешочка начинают продуцировать органический матрикс цемента (цементоид), а также коллагеновые волокна и основное аморфное вещество. В результате цементоид откладывается на поверхности дентина корня – в виде высокоминерализованного бесструктурного слоя «Хоупвелла-Смитта» (этот слой способствует прочному прикреплению цемента к дентину корня).
Далее первым образуется первичный цемент, не содержащий клеток. Он медленно откладывается по мере прорезывания зуба, покрывая 2/3 поверхности корня (ближе к коронковой части зуба). Далее происходит минерализация цементоида, которая связана с отложением фосфатов и карбоната кальция. Этот процесс идет волнами, и далее в апикальной трети корня и зоне фуркации – образуется клеточный, т.е. вторичный цемент. Надеемся, что наша статья оказалась Вам полезной!
Источники:
1. Высшее профессиональное образование автора в стоматологии,
2. The European Academy of Paediatric Dentistry (EU),
3. «Анатомия зубов человека» (Гайворонский, Петрова).
4. «Терапевтическая стоматология» (Политун, Смоляр),
5. «Гистология органов ротовой полости» (Глинкина В.В.).
Цемент зуба
Цемент зуба — это особенная костная ткань, которая полностью покрывает корень, впритык к зубной эмали. Благодаря цементу зуб плотно крепится в костной альвеоле и не выпадает из десны. Без такого защитного покрытия дентин корня подвергался бы воздействию болезнетворных бактерий, в результате чего зуб постоянно разрушался бы изнутри.
- первичный или бесклеточный, который прикрывает боковые поверхности корня зуба;
- вторичный или клеточный, который покрывает область бифуркации многокорневых зубов, а также верхушечную треть корня.
Чаще всего цемент наслаивается на эмаль, не оставляя незащищенным корень. Чаще цемент подходит впритык к эмали, но бывает и так, что не доходит, оставляя незащищенной полоску дентина. Это довольно опасно, так как незащищенный дентин подвержен пришеечному кариесу.
Зубной цемент образуется на протяжении всей жизни, причем процесс образования не является однородным. При хронических воспалениях периодонта цементообразование существенно усиливается, что может привести даже к гиперцементозу. А в случаях резорбции корня зуба новообразовавшийся цемент может не только заменить погибшие участки корня, но даже способствовать восстановлению его функции.
Строение
Строение первичного и вторичного цементов отличается.
- Первичный (бесклеточный) состоит преимущественно из коллагеновых волокон, а также из аморфного склеивающего вещества.
- Вторичный (клеточный) по строению похож на грубоволокнистую кость, только без кровеносных сосудов, содержит в основном цементоциты, цементобласты и межклеточное вещество.
В отличие от настоящей костной ткани цемент питается диффузно, через периодонт. По химическому составу состоит из органических веществ, которые составляют 32%, и неорганических веществ, которые составляют 68%.
Функции
- Защита корня зуба от воздействия внешней среды.
- Защищает дентин корня от проникновения болезнетворных бактерий, вызывающих кариес.
- Плотное крепление зуба в костной альвеоле.
- К шейке и корню крепятся волокна периодонта, благодаря цементу.
- Участие в репаративных процессах.
Как видим, без цемента нормальное функционирование зуба невозможно.
Цемент для зубных коронок и протезов
В стоматологии под цементом подразумевают не только естественный материал, который покрывает корень зуба, но и искусственный материал, при помощи которого крепятся зубные протезы, коронки и виниры. Искусственный цемент для коронок используется для их постоянной фиксации, он постоянно находится во рту пациента и поэтому должен максимально соответствовать естественному. Он не должен оказывать воздействие на пульпу зуба или травмировать мягкие ткани полости рта, не должен растворяться в слюне или давать усадку во время эксплуатации.
Поэтому в современной стоматологии используют только те материалы, которые максимально соответствуют выдвинутым требованиям.
Цемент для протезов еще называют стоматологическим клеем, ведь им приклеивают к зубу не только коронки и мостики, но и виниры, люминиры , а также другие стоматологические конструкции, основное предназначение которых — подарить пациенту белоснежную голливудскую улыбку.
Цемент зуба
Цемент зуба — это особенная костная ткань, которая полностью покрывает корень, впритык к зубной эмали. Благодаря цементу зуб плотно крепится в костной альвеоле и не выпадает из десны. Без такого защитного покрытия дентин корня подвергался бы воздействию болезнетворных бактерий, в результате чего зуб постоянно разрушался бы изнутри.
- первичный или бесклеточный, который прикрывает боковые поверхности корня зуба;
- вторичный или клеточный, который покрывает область бифуркации многокорневых зубов, а также верхушечную треть корня.
Чаще всего цемент наслаивается на эмаль, не оставляя незащищенным корень. Чаще цемент подходит впритык к эмали, но бывает и так, что не доходит, оставляя незащищенной полоску дентина. Это довольно опасно, так как незащищенный дентин подвержен пришеечному кариесу.
Зубной цемент образуется на протяжении всей жизни, причем процесс образования не является однородным. При хронических воспалениях периодонта цементообразование существенно усиливается, что может привести даже к гиперцементозу. А в случаях резорбции корня зуба новообразовавшийся цемент может не только заменить погибшие участки корня, но даже способствовать восстановлению его функции.
Строение
Строение первичного и вторичного цементов отличается.
- Первичный (бесклеточный) состоит преимущественно из коллагеновых волокон, а также из аморфного склеивающего вещества.
- Вторичный (клеточный) по строению похож на грубоволокнистую кость, только без кровеносных сосудов, содержит в основном цементоциты, цементобласты и межклеточное вещество.
В отличие от настоящей костной ткани цемент питается диффузно, через периодонт. По химическому составу состоит из органических веществ, которые составляют 32%, и неорганических веществ, которые составляют 68%.
Функции
- Защита корня зуба от воздействия внешней среды.
- Защищает дентин корня от проникновения болезнетворных бактерий, вызывающих кариес.
- Плотное крепление зуба в костной альвеоле.
- К шейке и корню крепятся волокна периодонта, благодаря цементу.
- Участие в репаративных процессах.
Как видим, без цемента нормальное функционирование зуба невозможно.
Цемент для зубных коронок и протезов
В стоматологии под цементом подразумевают не только естественный материал, который покрывает корень зуба, но и искусственный материал, при помощи которого крепятся зубные протезы, коронки и виниры. Искусственный цемент для коронок используется для их постоянной фиксации, он постоянно находится во рту пациента и поэтому должен максимально соответствовать естественному. Он не должен оказывать воздействие на пульпу зуба или травмировать мягкие ткани полости рта, не должен растворяться в слюне или давать усадку во время эксплуатации.
Поэтому в современной стоматологии используют только те материалы, которые максимально соответствуют выдвинутым требованиям.
Цемент для протезов еще называют стоматологическим клеем, ведь им приклеивают к зубу не только коронки и мостики, но и виниры, люминиры , а также другие стоматологические конструкции, основное предназначение которых — подарить пациенту белоснежную голливудскую улыбку.
43.Химический состав дентина зуба
Дентин (dciitimtm) составляет основную массу (до 85 %) зуба. Коронковая часть дентина покрыта эмалью, корневая - цементом. В дентине содержится до 72 % неорганических веществ и около 28 % органических и веществ и воды. Неорганические вещества представлены главным образом фосфатом, карбонатом и фторидом кальция, органические -коллагеном. Дентин состоит из основного вещества и проходящих в нем трубочек, в которых расположены отростки одонтобластов и окончания нервных волокон, проникающих из пульпы. Основное вещество содержит аморфное склеивающее вещество и коллагеновые фибриллы, собранные в пучки.
44.Химический состав цемента зуба.
Цемент (cementum) – это прослойка ткани, покрывающая корень зуба. По химическому составу он состоит из 22% органических веществ, 32% воды; остальную часть цемента составляют минеральные вещества, главным образом соли кальция. Цемент покрывает корень зуба сравнительно тонким слоем от границы эмали у шейки; постепенно он утолщается, достигая наибольшей толщины у верхушек и бифуркации многокорневых зубов. В области шейки зуба на некоторых микроскопических препаратах можно видеть, что тончайший слой цемента переходит на слой эмали, реже бывает наоборот. Цемент напоминает костную ткань. В отличие от кости цемент не имеет кровеносных сосудов.
45.Химический состав эмали зуба
Минеральные компоненты эмали представлены в виде соединений, имеющих кристаллическую решетку A (BO) K A Ca, Ba, кадмий, стронций В РО, Si, As, CO; K OH, Br, J, Cl.
* Гидроксиапатит — Са (РО) (ОН) в эмали зуба 75 % ГАП — самый распространенный в минерализованных тканях.
* Карбонатный апатит — КАП — 19 % Са (РО) СО — мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается.
* Хлорапатит Са (РО) Сl 4,4 % мягкий.
* Стронцевый апатит (САП) Са Sr (PO) — 0,9 % не распространен в минеральных тканях и распространен в неживой природе.
* Минеральные вещества — 1 – 2 % в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата.
Читайте также: