Добавка в бетон сульфат натрия
химическая добавка в бетонные смеси и строительные растворы
Формула изобретения
Противоморозная химическая добавка в бетонные смеси и строительные растворы, содержащая сульфат натрия, отличающаяся тем, что дополнительно содержит тиосульфат и роданид натрия при следующем соотношении компонентов, мас.%:
тиосульфат натрия | 10-77,7 |
роданид натрия | 10-77,7 |
сульфат натрия | 12,3-80 |
Описание изобретения к патенту
Изобретение относится к области строительных материалов, в частности к составам комплексных добавок, используемых в производстве бетонных смесей и строительных растворов.
Для обеспечения возможности выполнения строительных работ в зимнее время в состав бетонных и растворных смесей вводят комплексные добавки, способствующие твердению цемента при отрицательных температурах.
Известна комплексная добавка в бетонные смеси (патент России № 1733422, МПК 6 С04В 18/02, приоритет 23.04.1990), содержащая смесь балластных солей сероочистки коксового газа на основе тиосульфата и роданида натрия и органический компонент. Известная добавка содержит дополнительно в качестве органической добавки дикарбоновую кислоту из группы: щавелевая, плав дикарбоновых кислот фракции С 3 -С 6 , пимелиновая при следующем соотношении компонентов, мас.%: смесь балластных солей сероочистки коксового газа на основе тиосульфата и роданида натрия - основа, технический лигносульфонат - 9-13, указанная дикарбоновая кислота - 3-5.
Недостатком известной комплексной добавки является наличие в ее составе 13-18% органического компонента, способствующего замедлению процессов структурообразования в бетоне и снижающего противоморозное влияние добавки. Наиболее близкой по технической сущности и достигаемому техническому результату является комплексная добавка для бетонной смеси (А.С. СССР № 1231030, МПК 5 С04В 24/20, опубл. 15.05.86), содержащая натриевые соли бензолсульфокислот и воду, а также дополнительно сульфат натрия при следующем соотношении компонентов, мас.%: натриевые соли бензолсульфокислот - 7,5-13,5; сульфат натрия - 6,5-12,5; вода - остальное. В составе указанной комплексной добавки содержание органического компонента уменьшено до 7,5-13,5%.
Однако введение натриевых солей бензолсульфокислот также способствует замедлению гидратации цемента во времени, особенно на ранних стадиях твердения. Сульфат натрия способствует ускорению структурообразования в ранние сроки твердения, не вызывает коррозии арматуры.
В основу изобретения поставлена задача создания химической добавки в бетонные смеси и строительные растворы путем увеличения ее влияния на ранние сроки структурообразования за счет исключения из состава нежелательного компонента, способствующего снижению ранней прочности бетонов, и дополнительного включения в состав эффективных компонентов, повышающих раннюю прочность бетонов и позволяющих проводить бетонирование в зимний период.
Поставленная задача решается тем, что из комплексной добавки в бетонные смеси и строительные растворы, содержащей соли сульфата натрия, исключается органический компонент и согласно изобретению вводится тиосульфат и роданид натрия при следующем соотношении компонентов, мас.%:
тиосульфата натрия | 10-77,7 |
роданида натрия | 10-77,7 |
сульфата натрия | 12,3-80 |
Тиосульфат натрия за счет интенсификации гидратационных процессов способствует повышению растворимости минералов цемента (увеличению концентрации ионов Са 2+ в суспензии), сокращает сроки твердения и оптимизирует соотношение между гелевой и капиллярной пористостью бетона, в результате чего ускоряются процессы твердения, повышается ранняя и конечная прочность и морозостойкость бетона.
Оптимальное соотношение компонентов в составе добавки установлено экспериментально.
При увеличении или уменьшении указанного количества тиосульфата, сульфата и роданида натрия в составе добавки снижается прочность бетона как при твердении в нормальных условиях, так и при твердении на морозе.
Повышение содержания в заявляемой в качестве добавки смеси солей одного из компонентов выше заявляемого предела приводит к снижению эффективности ее влияния на прочность при твердении в нормальных и пониженных температурах за счет ослабления взаимодействия компонентов, усиливающего противоморозные характеристики добавки.
Использование нового состава и новых концентрационных соотношений в предлагаемой комплексной добавке расширяет область ее применения, например использование ее в качестве противоморозной.
Заявляемую комплексную добавку готовят следующим образом.
Добавку готовят путем дозирования и смешения водных растворов или сухих солей тиосульфата, роданида и сульфата натрия в пределах заявляемых количеств (возможно использование смеси солей с учетом корректировки химического состава в заявляемых пределах). Компоненты добавки смешивают и дозируют в соответствующую тару для транспортировки потребителю.
Для исследования свойств заявляемой добавки была приготовлена бетонная смесь, содержащая: 1 часть цемента марки ШПЦ-III/А-400 (Криворожского цементного завода); 1,9 части песка с модулем крупности 1,48; 2 части щебня фракции 5-10; 3 части щебня фракции 10-20; 0,43 части воды.
Заявляемую добавку в качестве солевого раствора концентрацией 20-50% вводили в бетонную смесь вместе с водой затворения в количестве 0,4-3% от массы цемента. Подвижность бетонной смеси определяли по ГОСТ 10181-2000, и она составляла ОК 4 см.
Для испытаний на прочность из бетонной смеси готовили образцы бетона, содержащие 1,5% добавки от массы цемента, твердевшие при отрицательных температурах и затем 28 суток в нормальных термовлажностных условиях, а также образцы бетона, твердевшие в нормальных термовлажностных условиях. Прочность образцов определяли в соответствии с ГОСТ 18105-86. Были испытаны бетонные смеси, содержащие добавку, как в заявляемых соотношениях компонентов, так и за их пределами. Были также испытаны бетонные образцы, изготовленные в соответствии с составом, указанным в известном решении (прототип).
Составы комплексных добавок по известному и заявляемому решениям, а также механические характеристики бетонных образцов представлены в таблице 1.
Добавка в бетон сульфат натрия
Во всех странах в настоящее время нафталинформальдегидные суперпластификаторы (НФС) являются либо самой используемой, либо одной из наиболее употребимых химических добавок
История развития производства НФС в нашей стране знала и взлеты, и падения. За прошедшие 30 лет менялись (и не раз!) количество заводов, выпускающих добавку, лидеры по качеству продукции, качество исходного сырья (нафталина, в первую очередь) и многое другое. Несколько утрируя, можно сказать, что неизменным оставалось лишь одно: присутствие в НФС некоторого количества сульфата натрия и споры относительно его роли и допустимого содержания.
Следует сразу уточнить, что ни в национальном, ни в Европейском стандартах не существует ограничений по содержанию сульфата натрия. Высказываемые иногда опасение по поводу возможной коррозии бетона выглядят безосновательными, т. к. при наихудших исходных данных (дозировке НФС 1% и содержании сульфата натрия 15%) изменение содержания свободных щелочей составит всего 0,05%, а сульфатов (по SO3) – 0,1%, что существенно ниже значений этих параметров в самом портландцементе.
Сульфат натрия – вещество, умеренно хорошо растворимое в воде, однако водные растворы характеризуются двумя особенностями: 1) растворимость сульфата натрия имеет выраженную температурную зависимость (см. табл. 1); 2) ниже 32,4°С из раствора кристаллизуется не безводная соль, а декагидрат Na2SO4•10H2O (т.е.при начале кристаллизации содержание свободной воды в системе понижается, что приводит к усилению выделения осадка).
Именно поэтому водные растворы НФС даже при невысоком содержании сульфата натрия при понижении температуры склонны к образованию осадка. Действительно, хотя при обычном 10-12%-ном уровне сульфата натрия в НФС его истинная концентрация в стандартном 35%-ном растворе составляет 3,5-4,2%, уже при температурах ниже +10 °С может наблюдаться образование осадка. Эмпирически установлено, что при содержании сульфата натрия
5% он не кристаллизуется из растворов НФС вплоть до замерзания.
Известно несколько технологий получения НФС с низким (
5%) содержанием сульфата натрия, соответственно, существует и предложение таких продуктов на рынке химических добавок. Многие полагают, что использование таких суперпластификаторов является предпочтительным. Так ли это с точки зрения технологии бетонов?
Чтобы разобраться в этой проблеме, необходимо вспомнить несколько фундаментальных положений химии гидратации цемента и механизма действия суперпластификаторов:
• пластификация цементных систем (в общем случае, минеральных суспензий) предполагает адсорбцию суперпластификатора на поверхности частиц твердой фазы;
• в случае портландцемента адсорбция протекает только на гидратных новообразованиях;
• наиболее быстро гидратирующейся фазой клинкера является С3А, алюмосодержащие фазы обладают также наибольшей активностью по отношению к суперпластификатору;
• гидратирующийся С3А может взаимодействовать и с НФС, и с сульфатанионом, и эти процессы являются конкурирующими;
• высокая подвижность пластифицированной бетонной смеси может быть обеспечена только при наличии в жидкой фазе достаточного количества свободного суперпластификатора.
Как перечисленные факторы могут сказываться на эффективности НФС в бетонах? Допустим, мы используем цемент с недостаточным содержанием регулятора структурообразования (гипса) или гипс содержит значительные количества ангидрита и обладает ухудшенной растворимостью. Это означает, что в начальный момент времени в жидкой фазе бетонной смеси будет статистически оптимальное количество суперпластификатора и недостаток сульфат-аниона. При слабой конкуренции сульфат-аниона на таком цементе будет связываться большее, чем обычно, количество суперпластификатора, в результате, подвижность такой бетонной смеси может катастрофически быстро (за несколько минут) снижаться до неприемлемых значений.
Классическая иллюстрация подобного явления была давно приведена в работах Хат-тори и Рамачандрана [1,2] (рис. 1–2). В данном случае введение суперпластификатора с задержкой эквивалентно наличию в составе портландцемента достаточного количества гипса, тогда как введение суперпластификатора с водой затворения моделирует недостаток гипса. Легко заметить, что величины адсорбции НФС изменяются в разы!
Рис. 1. Адсорбция НФС на смесях алюминатных минералов клинкера с гипсом (согласно [1])
Рис. 2. Кинетика адсорбции НФС на смеси С3А + 25% гипса (согласно [2])
К сожалению, приходится констатировать, что в последнее время стали намного чаще встречаться партии портландцемента (различных, подчеркнем, заводов!), которые, мягко говоря, неадекватно взаимодействуют с суперпластификаторами. В первую очередь, отмечается ускоренная потеря подвижности пластифицировнных бетонных смесей. Не имея полноценного анализа химико-минералогического и вещественного состава цементов, мы, естественно, не можем ни прогнозировать поведение таких вяжущих, ни дать удовлетворительное объяснение наблюдаемым явлениям. Тем не менее, влияние сульфата натрия на характеристики бетона на таком цементе кажется весьма показательным (табл. 2). Введение сульфата даже совместно с НФС (т.е. при мягком варианте регулирования гидратации С3А) привело к увеличению кажущейся подвижности на 6 см, а сохраняемости – более чем в 2 раза.
Аналогичные результаты получены и при испытаниях одной из последних разработок – суперпластификатора, относящегося к классу модифицированных НФС. Эта добавка интересна тем, что позволяет снизить оптимальную дозировку до 0,25–0,3% (т.е. до величин, сопоставимых с поликарбоксилатами) при обеспечении той же подвижности бетонных смесей и прочностных характеристик бетонов. Однако на исследуемом цементе бетонная смесь проявляла склонность к весьма быстрой потере подвижности (табл. 3, строка 1). Введение даже незначительного количества сульфата натрия позволило обеспечить приемлемую (практически, часовую) сохраняемость при неизменности других показателей качества.
Изучение влияния сульфата натрия на эффективность действия суперпластификаторов в последнее время стало предметом многочисленных исследований и обобщено в монографии по НФС [3]. Выводы независимых экспериментов свидетельствуют, что в разумном диапазоне растворимые сульфаты только повышают эффективность действия НФС (с поликарбоксилатами зависимость иная), приводится даже величина оптимального содержания свободных щелочей в портландцементе, равная 0,4–0,5% Na2O [4]. Можно вспомнить, что в одной из первых разработок НИИЖБ даже предлагалось переводить С-3 в сухую отпускную форму путем высушивания расчетным количеством безводного сульфата натрия [5].
Таблица 1. Температурная зависимость растворимости сульфата натрия
Таблица 2. Влияние сульфатов на сохраняемость подвижности с НФС
Таблица 3. Влияние сульфатов на сохраняемость подвижности с модифицированным НФС
Таким образом, если говорить о технической эффективности НФС, то присутствие в них сульфата натрия является не отрицательным, а, скорее наоборот, положительным фактором (то, что сейчас в англоязычной литературе обозначают термином robustness).
Почему в заголовке статьи были упомянуты наноструктуры? Дело в том, что, в отличие от эттрингита, образующегося в результате «классической» реакции С3А с гипсом, при взаимодействии трехкальциевого алюмината с НФС образуются интеркаляционные органоминеральные соединения [6]. Когда образование подобных фаз впервые было идентифицировано, их называли аморфными [7,8], затем по мере развития науки и инструментальных методов анализа их отнесли к наноструктурам. Интересно, что выявленная в указанных соединениях слоистая структура весьма близка к строению C-S-H-геля, только слои образованы не кремнекислородными, а алюмокислородными тетраэдрами, и между слоями помимо молекул воды и/или ионов Са 2+
располагаются еще и молекулы НФС.
В обычных гидроалюминатах кальция базальное расстояние между алюмооксидными слоями составляет 1,03 нм, а высота свободной полости 0,55 нм. Согласно данным Планка [9], в органоминеральных фазах размер (высота) полости зависит от собственных размеров суперпластификатора может достигать более 3 нм; для органоминеральных фаз с НФС приводят цифру 1,5 нм.
Безусловно, такое изменение микрои наноструктуры гидратных новообразований (по аналогии с C-S-H-фазой) может сказываться и на макрохарактеристиках цементного камня (а, следовательно, и бетона), но до настоящего времени подобная причинно-следственная связь не подкреплена результатами исследований. Поэтому пока мы достоверно можем лишь говорить о возможности образования таких наноструктур в бетоне с НФС при недостатке растворимых сульфатов и об отрицательном влиянии этого процесса на технологические характеристики бетонных смесей.
1. Suzue S., Ohada E., Hattori K. Adsorption of superplasticizers on cement. Rev. 35-th Gen. Meet. Cem. Assoc. Jap. Techn. Sess., Tokyo, 13–15 May, 1981, pp. 108–110.
2. Ramachandran V.S. Adsorption and hydration behaviour of tricalcium aluminate – water and tricalcium aluminate-gypsum-water systems in the presence of superplasticizers. J. Amer. Concr. Inst. 1983, N3, Proceedings, V. 80, pp.235-241.
3. N. Spiratos, M. Page, N.P. Mailvaganam, V.M. Malhotra, C. Jolicoeur. Superplasticizers for Concrete. Fundamentals, Technology and Practice. Ottawa, Canada. 2003. 322 p.
4. Jiang S., King B.-G., A ї tcin P.-C. Importance of adequate soluble alkali content to ensure cement/superplasticizer compatibility. Cem. And Concr. Res. V. 29, pp. 71-79, 1999.
5. Батраков В. Г. Модифицированные бетоны. М.: Стройиздат, 1990, 400 с.
6. Вовк А. И. Гидратация трехкальциевого алюмината С3А и смесей С3А –гипс в присутствии ПАВ: адсорбция или поверхностное фазообразование? Колл. журнал. 2000. т. 62. № 1. с. 31–38.
7. Фаликман В. Р., Вовк А. И., Вовк Г. А., Гарашин В. Р. Гидратация С3А и некоторые свойства мономинерального камня с суперпластификатором С-3. Сб. трудов НИИЖБ. 1988. С .43–51.
8. Ramachandran V. S., Feldman R. F. Effect of calcium lignosulfonate on tricalcium aluminate and its hydration products. Materiaux and Constrructions. 1972. V. 55. № 26, pp. 67–76.
9. Plank J., Dai Z., Zouaoui N., Vlad D. Intercalation of polycarboxylate superplasticizers into tricalcium aluminate hydrate phases. SP-239, pp.201–213, 2006.
C текущей ситуацией и прогнозом развития российского рынка добавок для бетонов, цемента, ССС можно познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков « Рынок добавок для бетонов, цемента и сухих строительных смесей в России ».
Добавка в бетон сульфат натрия
Во всех странах в настоящее время нафталинформальдегидные суперпластификаторы (НФС) являются либо самой используемой, либо одной из наиболее употребимых химических добавок
История развития производства НФС в нашей стране знала и взлеты, и падения. За прошедшие 30 лет менялись (и не раз!) количество заводов, выпускающих добавку, лидеры по качеству продукции, качество исходного сырья (нафталина, в первую очередь) и многое другое. Несколько утрируя, можно сказать, что неизменным оставалось лишь одно: присутствие в НФС некоторого количества сульфата натрия и споры относительно его роли и допустимого содержания.
Следует сразу уточнить, что ни в национальном, ни в Европейском стандартах не существует ограничений по содержанию сульфата натрия. Высказываемые иногда опасение по поводу возможной коррозии бетона выглядят безосновательными, т. к. при наихудших исходных данных (дозировке НФС 1% и содержании сульфата натрия 15%) изменение содержания свободных щелочей составит всего 0,05%, а сульфатов (по SO3) – 0,1%, что существенно ниже значений этих параметров в самом портландцементе.
Сульфат натрия – вещество, умеренно хорошо растворимое в воде, однако водные растворы характеризуются двумя особенностями: 1) растворимость сульфата натрия имеет выраженную температурную зависимость (см. табл. 1); 2) ниже 32,4°С из раствора кристаллизуется не безводная соль, а декагидрат Na2SO4•10H2O (т.е.при начале кристаллизации содержание свободной воды в системе понижается, что приводит к усилению выделения осадка).
Именно поэтому водные растворы НФС даже при невысоком содержании сульфата натрия при понижении температуры склонны к образованию осадка. Действительно, хотя при обычном 10-12%-ном уровне сульфата натрия в НФС его истинная концентрация в стандартном 35%-ном растворе составляет 3,5-4,2%, уже при температурах ниже +10 °С может наблюдаться образование осадка. Эмпирически установлено, что при содержании сульфата натрия
5% он не кристаллизуется из растворов НФС вплоть до замерзания.
Известно несколько технологий получения НФС с низким (
5%) содержанием сульфата натрия, соответственно, существует и предложение таких продуктов на рынке химических добавок. Многие полагают, что использование таких суперпластификаторов является предпочтительным. Так ли это с точки зрения технологии бетонов?
Чтобы разобраться в этой проблеме, необходимо вспомнить несколько фундаментальных положений химии гидратации цемента и механизма действия суперпластификаторов:
• пластификация цементных систем (в общем случае, минеральных суспензий) предполагает адсорбцию суперпластификатора на поверхности частиц твердой фазы;
• в случае портландцемента адсорбция протекает только на гидратных новообразованиях;
• наиболее быстро гидратирующейся фазой клинкера является С3А, алюмосодержащие фазы обладают также наибольшей активностью по отношению к суперпластификатору;
• гидратирующийся С3А может взаимодействовать и с НФС, и с сульфатанионом, и эти процессы являются конкурирующими;
• высокая подвижность пластифицированной бетонной смеси может быть обеспечена только при наличии в жидкой фазе достаточного количества свободного суперпластификатора.
Как перечисленные факторы могут сказываться на эффективности НФС в бетонах? Допустим, мы используем цемент с недостаточным содержанием регулятора структурообразования (гипса) или гипс содержит значительные количества ангидрита и обладает ухудшенной растворимостью. Это означает, что в начальный момент времени в жидкой фазе бетонной смеси будет статистически оптимальное количество суперпластификатора и недостаток сульфат-аниона. При слабой конкуренции сульфат-аниона на таком цементе будет связываться большее, чем обычно, количество суперпластификатора, в результате, подвижность такой бетонной смеси может катастрофически быстро (за несколько минут) снижаться до неприемлемых значений.
Классическая иллюстрация подобного явления была давно приведена в работах Хат-тори и Рамачандрана [1,2] (рис. 1–2). В данном случае введение суперпластификатора с задержкой эквивалентно наличию в составе портландцемента достаточного количества гипса, тогда как введение суперпластификатора с водой затворения моделирует недостаток гипса. Легко заметить, что величины адсорбции НФС изменяются в разы!
Рис. 1. Адсорбция НФС на смесях алюминатных минералов клинкера с гипсом (согласно [1])
Рис. 2. Кинетика адсорбции НФС на смеси С3А + 25% гипса (согласно [2])
К сожалению, приходится констатировать, что в последнее время стали намного чаще встречаться партии портландцемента (различных, подчеркнем, заводов!), которые, мягко говоря, неадекватно взаимодействуют с суперпластификаторами. В первую очередь, отмечается ускоренная потеря подвижности пластифицировнных бетонных смесей. Не имея полноценного анализа химико-минералогического и вещественного состава цементов, мы, естественно, не можем ни прогнозировать поведение таких вяжущих, ни дать удовлетворительное объяснение наблюдаемым явлениям. Тем не менее, влияние сульфата натрия на характеристики бетона на таком цементе кажется весьма показательным (табл. 2). Введение сульфата даже совместно с НФС (т.е. при мягком варианте регулирования гидратации С3А) привело к увеличению кажущейся подвижности на 6 см, а сохраняемости – более чем в 2 раза.
Аналогичные результаты получены и при испытаниях одной из последних разработок – суперпластификатора, относящегося к классу модифицированных НФС. Эта добавка интересна тем, что позволяет снизить оптимальную дозировку до 0,25–0,3% (т.е. до величин, сопоставимых с поликарбоксилатами) при обеспечении той же подвижности бетонных смесей и прочностных характеристик бетонов. Однако на исследуемом цементе бетонная смесь проявляла склонность к весьма быстрой потере подвижности (табл. 3, строка 1). Введение даже незначительного количества сульфата натрия позволило обеспечить приемлемую (практически, часовую) сохраняемость при неизменности других показателей качества.
Изучение влияния сульфата натрия на эффективность действия суперпластификаторов в последнее время стало предметом многочисленных исследований и обобщено в монографии по НФС [3]. Выводы независимых экспериментов свидетельствуют, что в разумном диапазоне растворимые сульфаты только повышают эффективность действия НФС (с поликарбоксилатами зависимость иная), приводится даже величина оптимального содержания свободных щелочей в портландцементе, равная 0,4–0,5% Na2O [4]. Можно вспомнить, что в одной из первых разработок НИИЖБ даже предлагалось переводить С-3 в сухую отпускную форму путем высушивания расчетным количеством безводного сульфата натрия [5].
Таблица 1. Температурная зависимость растворимости сульфата натрия
Таблица 2. Влияние сульфатов на сохраняемость подвижности с НФС
Таблица 3. Влияние сульфатов на сохраняемость подвижности с модифицированным НФС
Таким образом, если говорить о технической эффективности НФС, то присутствие в них сульфата натрия является не отрицательным, а, скорее наоборот, положительным фактором (то, что сейчас в англоязычной литературе обозначают термином robustness).
Почему в заголовке статьи были упомянуты наноструктуры? Дело в том, что, в отличие от эттрингита, образующегося в результате «классической» реакции С3А с гипсом, при взаимодействии трехкальциевого алюмината с НФС образуются интеркаляционные органоминеральные соединения [6]. Когда образование подобных фаз впервые было идентифицировано, их называли аморфными [7,8], затем по мере развития науки и инструментальных методов анализа их отнесли к наноструктурам. Интересно, что выявленная в указанных соединениях слоистая структура весьма близка к строению C-S-H-геля, только слои образованы не кремнекислородными, а алюмокислородными тетраэдрами, и между слоями помимо молекул воды и/или ионов Са 2+
располагаются еще и молекулы НФС.
В обычных гидроалюминатах кальция базальное расстояние между алюмооксидными слоями составляет 1,03 нм, а высота свободной полости 0,55 нм. Согласно данным Планка [9], в органоминеральных фазах размер (высота) полости зависит от собственных размеров суперпластификатора может достигать более 3 нм; для органоминеральных фаз с НФС приводят цифру 1,5 нм.
Безусловно, такое изменение микрои наноструктуры гидратных новообразований (по аналогии с C-S-H-фазой) может сказываться и на макрохарактеристиках цементного камня (а, следовательно, и бетона), но до настоящего времени подобная причинно-следственная связь не подкреплена результатами исследований. Поэтому пока мы достоверно можем лишь говорить о возможности образования таких наноструктур в бетоне с НФС при недостатке растворимых сульфатов и об отрицательном влиянии этого процесса на технологические характеристики бетонных смесей.
1. Suzue S., Ohada E., Hattori K. Adsorption of superplasticizers on cement. Rev. 35-th Gen. Meet. Cem. Assoc. Jap. Techn. Sess., Tokyo, 13–15 May, 1981, pp. 108–110.
2. Ramachandran V.S. Adsorption and hydration behaviour of tricalcium aluminate – water and tricalcium aluminate-gypsum-water systems in the presence of superplasticizers. J. Amer. Concr. Inst. 1983, N3, Proceedings, V. 80, pp.235-241.
3. N. Spiratos, M. Page, N.P. Mailvaganam, V.M. Malhotra, C. Jolicoeur. Superplasticizers for Concrete. Fundamentals, Technology and Practice. Ottawa, Canada. 2003. 322 p.
4. Jiang S., King B.-G., A ї tcin P.-C. Importance of adequate soluble alkali content to ensure cement/superplasticizer compatibility. Cem. And Concr. Res. V. 29, pp. 71-79, 1999.
5. Батраков В. Г. Модифицированные бетоны. М.: Стройиздат, 1990, 400 с.
6. Вовк А. И. Гидратация трехкальциевого алюмината С3А и смесей С3А –гипс в присутствии ПАВ: адсорбция или поверхностное фазообразование? Колл. журнал. 2000. т. 62. № 1. с. 31–38.
7. Фаликман В. Р., Вовк А. И., Вовк Г. А., Гарашин В. Р. Гидратация С3А и некоторые свойства мономинерального камня с суперпластификатором С-3. Сб. трудов НИИЖБ. 1988. С .43–51.
8. Ramachandran V. S., Feldman R. F. Effect of calcium lignosulfonate on tricalcium aluminate and its hydration products. Materiaux and Constrructions. 1972. V. 55. № 26, pp. 67–76.
9. Plank J., Dai Z., Zouaoui N., Vlad D. Intercalation of polycarboxylate superplasticizers into tricalcium aluminate hydrate phases. SP-239, pp.201–213, 2006.
C текущей ситуацией и прогнозом развития российского рынка добавок для бетонов, цемента, ССС можно познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков « Рынок добавок для бетонов, цемента и сухих строительных смесей в России ».
Характеристика сульфата натрия как ускорителя для затвердевания бетонов
Тема ускорителей в современной технологии бетона чрезвычайно скандальна, умышленно запутанная и заангажированая самими производителями и продавцами хим. добавок.
В первую очередь данное положение вещей обусловлено тем, что с помощью ускорителей можно достаточно легко, просто и дешево существенно модифицировать технологическую производственную цепочку. А это деньги, большие деньги. А так как деньги любят тишину, продавцы хим. добавок стараются её соблюдать, особенно не распространяясь на тему ускорителей. Гораздо охотней они популяризируют и пропагандируют свои полифункциональные составы вообще, хотя немалую часть успеха следует, по праву, отдать удачно подобранным в их составах ускорителям.
Прикрепленные файлы: 1 файл
уирс - копия.docx
Тема ускорителей в современной технологии бетона чрезвычайно скандальна, умышленно запутанная и заангажированая самими производителями и продавцами хим. добавок.
В первую очередь данное положение вещей обусловлено тем, что с помощью ускорителей можно достаточно легко, просто и дешево существенно модифицировать технологическую производственную цепочку. А это деньги, большие деньги. А так как деньги любят тишину, продавцы хим. добавок стараются её соблюдать, особенно не распространяясь на тему ускорителей. Гораздо охотней они популяризируют и пропагандируют свои полифункциональные составы вообще, хотя немалую часть успеха следует, по праву, отдать удачно подобранным в их составах ускорителям.
Так для тяжелых бетонов весьма критичный параметр – время оборачиваемости дорогостоящей формоснастки, становится возможным модифицировать не по пути затратной и энергоемкой тепловлажностной обработки, а «подстегивая» кинетику набора прочности химическим путем.
В легких бетонах, и в частности в пенобетонах, с помощью ускорителей удается минимизировать влияние минералогии, тонины помола и длительности хранения цемента на качество продукции, «выпередить» осадку свежеприготовленной пенобетонной матрицы ускоренным набором её прочности.
Как это ни парадоксально, но именно тема ускорителей – краеугольный камень также и экономики полифункциональных модификаторов. Простейшая композиция подобного рода состоит как минимум из двух компонентов, - обычно это пластификатор второй (реже третьей) группы эффективности и какой либо ускоритель, либо специально подобранная смесь ускорителей, обеспечивающих аддитивность (или даже синергизм) компонентов. Элементарный рецептурно-экономический анализ показывает, что стоимость именно ускорителя и является основным ценообразующим фактором таких полифункциональных составов. Иными словами, - кто «сидит» на дешевых ускорителях – тот владеет рынком полифункциональных добавок. Даже «легкая техногенность» (а порой и не легкая) некоторых составов не является преградой для их массового применения – критерии экономической целесообразности перевешивают.
Одним из ускорителей является сульфат натрия и его разновидности.
1 Литературный обзор
1.1 Характеристика сульфата натрия как ускорителя для затвердевания бетонов.
В промышленности (СН) сульфат натрия (глауберова соль) очень широко применяется в производстве красителей, стекла и соды. В основном его получают естественным путем - из минерала мираболита. Крупнейшим в мире поставщиком мираболита является залив Кара-Богаз-Гол на Каспии. Дешевизна и доступность (СН) сделала его очень привлекательным для многих отраслей промышленности. В т.ч. и для строительной индустрии.
Да, давно гостирован, да применяется, куда ни сунься – все и везде о нем упоминают. Но информация присутствует в форме отрывочных фрагментов и кусков. Мало того, еще в 1977 – 1978 гг. выдающиеся советские бетоноведы Баженов и Волженский устроили, что называется, форменную грызню на страницах журнала «Бетон и железобетон» (ведущего периодического издания страны по строительным технологиям, той поры), - перемыли косточки как друг другу(культурно и цивилизовано, разумеется), так и сульфату натрия, под горячую руку. Видно утверждение, что некоторые щелочные соли, и в первую очередь сульфат натрия, резко негативно влияют на длительную прочность цементного камня, особенно при малых В/Ц, действительно имеет место – нет дыма без огня. (Негативное влияние сернокислых солей и сульфата натрия, в частности, было доказано еще исследованиями Бутта Ю.М. и Рояка Г.С. в 1956 г.)
Западное бетоноведение, в большинстве своем, также игнорирует (СН) как ускоритель. Во всяком случае, в знаменитой книге канадского бетоноведа Рамачандрана «Добавки в бетон» о нём практически не упоминается.
Механизм действия сульфата натрия заключается в том, что реагируя с гидратом окиси кальция, выделяющимся из цемента, он образует гипс по формуле:
1.2 Производство сульфат натрия. Свойства и характеристики.
Сульфат натрия — важный химический продукт, потребность в котором неуклонно растет и до сего дня не полностью удовлетворяется. Задачи ликвидации дефицита сульфата натрия, повышения его качества и улучшения технико-экономических показателей соответствующих производств требуют проведения целого ряда научно-исследовательских работ, расширения и углубления знаний научных работников, заводского персонала и проектантов.
Кристаллогидрат сульфата натрия был описан Р. Глаубером в 1658 г. как остаток, получаемый в результате взаимодействия поваренной соли с серной кислотой, и был назван им мирабилитом. В 1767 г. мирабилит, который стали также называть глауберовой солью, был выделен из природных рассолов, найденных в Германии в местечке Фридрихсхалле.
В дальнейшем сульфат натрия был обнаружен во многих природных рассолах на разных континентах земного шара, а также в виде твердых соляных отложений, содержащих, в зависимости от места нахождения, мирабилит (декагидрат) или тенардит (безводная соль).
Сульфат натрия занимает одно из важнейших мест среди продуктов химической промышленности большинства развитых стран. Общее производство сульфата натрия в мире росло до 1975 г., в последующие годы производство уменьшилось, одновременно увеличился спрос на продукт высокого качества. Согласно данным зарубежных экономистов к 1980 г. в США производство должно возрасти в 1,5 раза, хотя предсказания роста в 1975—1976 гг. не оправдались.
Сульфат натрия используют во многих производствах, главным образом в целлюлозно-бумажной и стекольной промышленности, а также в производстве синтетических моющих средств (CMC). Введение сульфата натрия в процессе переработки древесины приводит к получению так называемой «крафт»-целлюлозы. Последняя обладает жесткостью; применяют ее для производства технических сортов бумаги повышенной прочности, используемой в качестве упаковочного материала. В стекольной промышленности сульфат натрия может заменить в случае необходимости соду, но годен также и в качестве самостоятельного компонента шихты.
Порошкообразные CMC содержат значительное количество сульфата натрия, доходящее в отдельных случаях до 70% от общего количества.
Сульфат натрия получают из природного сырья, т. е. природных рассолов, преимущественно морского и сульфат-карбонатного типа, солевых отложений, содержащих мирабилит, астра- ханит, тенардит и различные гидратированные формы сульфата магния. Две из наиболее крупных стран-производителей — Россия и США — получают около половины продукта переработкой природного сырья. Остальная часть сульфата натрия в этих странах — попутный продукт производств синтетических жирных кислот, волокна (главным образом, вискозы), хромсодержащих соединений. В ряде стран (Япония, Франция) используют отходы серной кислоты и сульфата железа; кроме того, сульфат натрия получают в качестве попутного продукта в производстве соляной кислоты конверсионным методом из хлорида натрия.
В некоторых отраслях промышленности, например нефтеперерабатывающей, образуются большие количества низкосортного сульфата натрия, который может быть использован только после соответствующей переработки. Использование таких отходов определяется общими ресурсами и потребностями страны, экспортными возможностями и общим техническим уровнем производства минеральных солей.
Основные природные источники сульфата натрия расположены в аридной зоне земного шара, главным образом в северном полушарии. К таким источникам относятся: зал. Кара-Богаз-Гол и оз. Кучук (Россия); Большое Соленое Оз., оз. Сёрлз; отложения мирабилита и смеси мирабилита и тенардита в штатах Невада, Ныо-Мехико, Техас и Калифорния (США); рапа и отложения тенардита и мирабилита в провинциях Саскачеван и Альберта (Канада); озерная вода и подземные рассолы в Индии и другие.
Многокомпонентный характер сырья, отчасти находящегося в виде концентрированных растворов или получаемого в виде таковых в результате подземного выщелачивания, определяет сложный характер переработки его, основанный на использовании различий в физико-химических свойствах солевых систем в зависимости от температуры проведения процесса, а также на различии в кинетике кристаллизации отдельных твердых фаз. Во многих случаях природные рассолы и солевые отложения перерабатывают комплексно с получением нескольких продуктов, что является более сложной задачей, чем выделение одного продукта.
Изучение физико-химических равновесий в данных системах было начато Я. Г. Вант-Гоффом в 1877 г. и продолжено исследователями многих стран. Отечественная наука обогатила мир исследованиями Н. С. Курнакова, В. П. Ильинского, В. И. Николаева, А. В. Николаева, Г. С. Сидельникова, И. Н. Лепешкова, А. Б. Здановского, О. Д. Кашкарова, С. 3. Макарова, И. Г. Дружинина, О. К. Янатьевой. Природные рассолы и их модели — предмет изучения на протяжении столетия, однако все еще остаются вопросы, требующие дальнейшего рассмотрения.
Изучению различных аспектов физической химии и технологии производства сульфата натрия посвящен ряд книг и разделов общетеоретических монографий
Физические свойства
Молекулярная масса сульфата натрия (сернокислого натрия) 142,048. В виде безводных кристаллов он устойчив выше 32,383 °С, а в интервале 32,4—400 °С образует ряд полиморфных модификаций. Из них в первую очередь следует отметить тенардит, имеющий бипирамидальные кристаллы ромбической сингонии с отношением осей а : b : с = 0,597 : 1 : 1,254 и переходящий при 245 С С в призмы моноклинной сингонии. Указанные кристаллические формы отличаются по теплоемкости и растворимости.
Для тенардита, выделенного из горячих растворов и высушенного при 110 °С, отмечены следующие переходы:
-т __ 180-200°С „ 240 °С ,, 570-600° С , _
Склонность к связыванию с влагой у |3-формы понижена. Процесс гидратации протекает по мере перехода Р ->- а [16, 17].
Плотность кристаллов 2,698 г/см 3 и может меняться в незначительных пределах в зависимости от условий образования.
Исследования термической устойчивости показали, что уменьшение массы начинается с 1000 °С [18]. Прокаливание сульфата натрия сопровождается частичным разложением; водный раствор, образующийся при растворении остатка, имеет рН 7.
Термодинамические характеристики сульфата натрия приведены в табл. 1.1. Для расчета гиббсовой энергии образования сульфата натрия при различных температурах предложено уравнение [19]:
AG = —1 368 908 + 38,58Г In Т — 0,005225Г 2 + 130,12т
Коэффициент преломления кристаллов, измеренный в спирте и бензоле, равен:
«а= 1,471; ng = 1,477; = 1,485
При хранении на воздухе сульфат натрия поглощает влагу и цементируется в монолит.
Сульфат натрия диамагнитен. Магнитная восприимчивость составляет 0,643-10" 6 В.
Температура кипения сульфата натрия 1404 °С. В интервале от —1,2 до 32,4 °С из водных растворов в качестве стабильной формы кристаллизуется декагидрат сульфита натрия Na2S04 • • ЮН20 (мирабилит, глауберова соль).
Мирабилит (М — 322,208) образует бесцветные прозрачные моноклинные призмы. Плотность кристаллов 1,464 г/см 3 .
Мирабилит можно рассматривать как лед, в структуру которого внедрились натрий- и сульфат-ионы; его термодинамические характеристики приведены в табл. 1.1. При обычном давлении мирабилит инконгруэнтно плавится при 32,4 °С, выделяя тенардит и образуя насыщенный раствор сульфата натрия. С повышением давления температура плавления мирабилита незначительно меняется, проходя через максимум при 32,4 °С. Значительное понижение точки перехода вызывают посторонние вещества (например, аммиак, хлорид натрия, едкий натр и др.; см. в последующих главах), так как их присутствие разрушает кристаллическую решетку декагидрата.
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СИСТЕМЫ
Na2S04—Н20
На политерме системы Na + || S04
, Н20 (рис. II. 1). сплошной линией обозначены равновесные составы насыщенных растворов в стабильном состоянии, а штриховой — в метастабильном.
В указанном температурном интервале растворимость испытывает несколько инверсий. В пределах от —1,2 до 32,38 °С в равновесии с жидкой фазой находится мирабилит, растворимость которого возрастает с повышением температуры. В интервале 32,38—102,88 °С (102,88 °С — температура кипения насыщенного раствора сульфата натрия при атмосферном давлении) зависимость растворимости от температуры носит обратный характер. Дальнейшее повышение температуры до 150 °С слабо
* В интервале 0—32,38 °С равновесная твердая фаза состоит из дека- гидрата сульфата натрия, а в интервале 32,38 — 241 °С из ромбоэдрических кристаллов сульфата натрия; выше 241 °С равновесная донная фаза представлена моноклинными кристаллами сульфата натрия. влияет на растворимость. Выше этой температуры наблюдается прямая зависимость между растворимостью и температурой вплоть до точки перехода ромбических кристаллов в моноклинные (около 240 °С). Начиная с 248 °С и до критической температуры воды растворимость резко падает и при 365 °С составляет 0,4%
Читайте также: