Для приготовления легкого бетона используют следующие крупные заполнители
Легкие бетоны на пористых заполнителях
Пористые заполнители - распространенные материалаы для изготовления стеновых панелей из легких конструкционно-теплоизоляционных бетонов. По происхождению заполнители можно разделить на три группы.
1. Природные заполнители из пористых изверженных и осадочных горных пород - пемза, пепел, дробленый туф, пористые известняки, известковые туфы, ракушечники, диатомиты и др.
2. Промышленные отходы - заполнители на основе пористых металлургических, топливных шлаков и зол.
3. Искусственные заполнители - керамзит, аглопорит и др.
По назначению различают пористые заполнители для теплоизоляционных, конструкционно-теплоизоляционных и конструкционных легких бетонов.
По размерам зерен пористые заполнители, так же как и плотные, разделяют на два вида:
1. Крупные заполнители размером 5-40 мм, эти заполнители разделяют на фракции 5-10, 10-20 и 20-40 мм.
2. Пески с максимальным размером зерен не более 5 мм.
По зерновому составу различают пески рядовые с размерами зерен от 0,05 до 5 мм; пески крупные с размерами зерен от 1,25 до 5 мм и мелкие пески с максимальным размером зерна, не превышающим 1,25 мм.
Свойства пористых горных пород, применяемых в качестве заполнителей, и свойства искусственных пористых заполнителей подробно рассматриваются далее, поэтому здесь приведена краткая характеристика только искусственных пористых заполнителей.
Керамзит - искусственный гравий или песок, полученный вспучиванием легкоплавких глин. Вспучивание происходит при совмещении процессов спекания глин и газовыделения при кратковременном обжиге. Образующийся при спекании расплав закрывает капиллярные поры, и выделяющийся газ вспучивает материал. Насыпная плотность керамзита 400-1200 кг/м3.
Аглопорит получают спеканием глин с промышленными отходами (например, шлаками) и другими материалами, содержащими органические вещества, сгорающие при обжиге. По сравнению с керамзитом, аглопорит содержит больше открытых пор, менее морозостоек. Насыпная плотность аглопорита 700-1500 кг/м3.
Вспученный доменный шлак (шлаковая пемза) получают при определенном режиме охлаждения шлакового расплава. Шлаковый расплав выливают в бассейн с ограниченным количеством воды или на слой мокрого песка. Испарение воды и охлаждение расплава приводят к образованию материала, по внешнему виду и свойствам напоминающего природную пемзу. Насыпная плотность шлаковой пемзы 500-1300 кг/м3.
Перлит - пористый заполнитель, образующийся при быстром нагревании вулканических стекол (обсидиана, витрофира и других горных пород). Увеличение объема в 6-12 раз при нагревании обусловлено испарением воды, содержащейся в вулканическом стекле. Перлит относится к числу наиболее легких эффективных заполнителей. Насыпная плотность перлитового гравия 250-450 кг/м3 и перлитового песка 100-150 кг/м3.
Обожженный вермикулит получают обжигом гидрослюд. Как и при производстве перлита, испарение химически связанной воды при быстром нагревании приводит к раздвижке пластинок слюды и увеличению объема в 10-20 раз. Насыпная плотность вермикулита составляет 100-200 кг/м3.
Особенности технологии производства легких бетонов на пористых заполнителях.
Бетонные смеси и бетоны на плотных и пористых заполнителях существенно различаются по техническим свойствам. Легкобетонные смеси имеют повышенную водопотребность и легко расслаиваются вследствие различия плотности заполнителей и цементного теста. Поэтому при производстве изделий приходится применять жесткие легкобетонные смеси и интенсивные способы уплотнения, например вибрирование. Для обеспечения требуемой удобоукладываемости и прочности легкобетонные смеси и бетоны требуют большего расхода вяжущего по сравнению с аналогичными показателями бетонов на плотных заполнителях.
Легкий бетон можно рассматривать как двухкомпонентную систему, состоящую из крупного пористого заполнителя и растворной части.
Растворная составляющая образует среду (матрицу), в которой размещены зерна крупного заполнителя. Такая модель отражает структуру легкого бетона, в котором все пустоты заполнены растворной составляющей с необходимой раздвижкой зерен крупного заполнителя (рис. 6.9, а). Если пустоты не заполнены, то бетон имеет структуру (рис. 6.9, б), характерную для крупнопористого легкого бетона, когда зерна крупного заполнителя соприкасаются и цементное тесто частично удалено из зоны контакта. Основной задачей подбора состава легкого бетона является получение бетона требуемого класса по прочности при минимальной средней плотности. Снижение плотности бетона может быть обеспечено одним из следующих способов:
а) увеличением объемной доли пористого заполнителя в легком бетоне путем тщательного подбора зернового состава так, чтобы мелкие фракции заполняли пустоты каркаса, образованного крупной фракцией. Это позволяет уменьшить содержание цементного камня в легком бетоне;
б) применением заполнителей имеющих минимальную среднюю плотность;
в) использованием цементов высоких марок, что позволяет сократить расход вяжущего при обеспечении требуемой прочности бетона;
г) повышением пористости растворной составляющей (матрицы) путем введения воздухововлекающих поверхностно-активных добавок (поризованные легкие бетоны).
Зависимость прочности легкого бетона от содержания воды в смеси представлена на рис. 6.10. При увеличении расхода воды прочность бетона заданного состава сначала повышается. Это обусловлено увеличением объема цементного теста, улучшением удобоукладываемости бетонной смеси и, как следствие, повышением степени уплотнения и плотности бетона в целом.
Пористые заполнители обладают высоким водопоглощением. При перемешивании, укладке, уплотнении и твердении легкобетонных смесей происходит поглощение воды пористым заполнителем и фактическое В/Ц изменяется. Трудно определить, какое количество воды поглощено пористым заполнителем, так как этот процесс продолжается длительное время. Следует, однако, иметь в виду, что поглощение воды заполнителем и снижение В/Ц приводят к дополнительному росту прочности легкого бетона, особенно в раннем возрасте.
Оптимальный расход воды в легких бетонах соответствует наибольшей прочности бетона и плотности бетонной смеси, уложенной в данных условиях. Дальнейшее увеличение расхода воды приводит к падению прочности за счет понижения плотности цементного камня, так же как и в бетонах на плотных заполнителях.
Максимально достижимая прочность легкого бетона заданного состава определяется расходом цемента и прочностью пористого заполнителя. Характерной особенностью легких бетонов является зависимость их прочности от расхода цемента. При проектировании тяжелых (обычных) бетонов добиваются сокращения расхода цемента путем правильного выбора зернового состава заполнителей, так как это не приводит к снижению прочности при полном уплотнении. При повышении расхода цемента в легких бетонах их прочность растет, поскольку уменьшается объемная доля малопрочного пористого заполнителя, однако при этом увеличивается средняя плотность бетона, что нежелательно.
Подбор состава легких бетонов
Задачей подбора состава является приготовление бетонной смеси и бетона, удовлетворяющих следующим требованиям: бетонная смесь должна иметь требуемую удобоукладываемость, а легкий бетон - требуемые среднюю плотность и класс по прочности.
Также к легкому бетону предъявляют требования по морозостойкости и стоимости. Снижение стоимости может быть обеспечено путем уменьшения расхода цемента. Подбор состава заключается в установлении такого соотношения между компонентами, которое позволяет получить бетонную смесь требуемой удобоукладываемости и бетон требуемой плотности, прочности и долговечности при минимальных затратах.
По сравнению с подбором состава тяжелого бетона, задача осложняется необходимостью обеспечения заданной средней плотности легкого бетона. При подборе состава легкого бетона трудно установить требуемое В/Ц по заданной прочности из-за поглощения воды пористым заполнителем. Подбор состава производится опытным путем: приготовлением и испытанием образцов легкобетонной смеси и легкого бетона.
Легкие бетоны и легкобетонные смеси на пористых заполнителях
В зависимости от вида применяемого крупного заполнителя легкие бетоны на пористых заполнителях именуют керамзитобетоном, шлакобетоном, аглопоритобетоном, туфобетоном и т. д.
По структуре легкие бетоны на пористых заполнителях делят на следующие основные группы: обычные легкие бетоны, изготовляемые из вяжущего, воды, крупного и мелкого заполнителя, межзерновые пустоты которых полностью заполнены раствором; малопесчаные легкие бетоны, приготовляемые из вяжущего, воды, крупного и мелкого заполнителя, межзерновые пустоты которых заполнены раствором лишь частично; беспесчаные (крупнопористые) легкие бетоны с расходом вяжущего не более 300 кг/м 3 , в которых отсутствует мелкий заполнитель; поризованные легкие бетоны, состоящие из вяжущего, воды, кремнеземистого компонента, крупного заполнителя и порообразователя.
По виду применяемого вяжущего легкие бетоны на пористых заполнителях делят на цементные, цементно-известковые и др.
Основные физико-механические показатели легких бетонов зависят от многих факторов, важнейшими из которых являются качество заполнителей и их зерновой состав, вид и количество вяжущего и добавок, содержание воды в смеси, а также способы и режимы их укладки и уплотнения.
Наибольшее влияние на объемную массу и прочность легких бетонов оказывает зерновой состав и качество заполнителей (объемная масса и прочность, а также форма и характер поверхности зерен. Так как зерна крупного заполнителя благодаря пористому строению обладают по сравнению с песчаными фракциями меньшей объемной массой и прочностью, то при увеличении содержания крупного заполнителя в смеси, объемная масса и прочность бетона снижаются. Крупнопористые бетоны, состоящие преимущественно из пористого щебня или гравия, обладают наименьшей объемной массой, однако их прочность невелика. С повышением доли мелкого заполнителя прочность бетонов возрастает, но одновременно увеличивается и их объемная масса.
Объемная масса легких бетонов в значительной мере зависит от качества заполнителей. Исследованиями установлено, что объемная масса легких бетонов тем меньше, чем прочнее зерна заполнителя, более округла их форма и ровнее их поверхность.
Прочность и объемная масса легких бетонов с увеличением расхода вяжущего возрастают, что объясняется повышением содержания в бетоне более прочного, но в то же время и более тяжелого компонента — цементного камня.
Зависимость объемной массы и предела прочности легкого бетона на пористых заполнителях от расхода вяжущего |
Получение наиболее легкого и экономичного по расходу вяжущего бетона может быть достигнуто при таком зерновом составе заполнителей, который бы обеспечивал получение бетона заданной прочности при наименьшем расходе вяжущего. Как показали исследования, наименьший расход вяжущего имеет место при определенном соотношении между мелкими и крупными фракциями и небольшом количестве средних (1,2—5 мм) фракций заполнителя.
График для определения оптимального зернового состава пористого заполнителя по кривым расхода цемента 1 и объемной массы легкого бетона 2 |
Зерновые составы заполнителей, кривые просеивания которых находятся в пределах заштрихованной площади, обеспечивают наименьшую пустотность и получение бетона с наименьшим расходом вяжущего. Наименьшего расхода вяжущего без снижений прочности бетона можно достигнуть и при использовании высокоактивного вяжущего. При этом за счет сокращения количества цементного камня уменьшается и объемная масса бетона.
Большое влияние на свойства легкобетонных смесей и бетонов оказывает содержание воды. Зависимость прочности легкого бетона определенного состава при одинаковом содержании цемента от количества воды в смеси показана на рис. ниже.
Зависимость прочности легкого бетона на пористых заполнителях от количества воды |
Левая, восходящая, ветвь кривой показывает, что с увеличением расхода воды в смеси прочность и объемная масса бетона постепенно увеличиваются. Это происходит за счет того, что с повышением расхода воды увеличивается количество цементного теста и растет подвижность смеси, в результате чего повышается ее плотность. Правая, нисходящая, ветвь кривой свидетельствует о том, что после достижения наибольшей относительной плотности смеси при заданных параметрах уплотнения (точка перегиба кривой) дальнейшее увеличение количества воды приводит к уменьшению плотности и прочности цементного камня и всего бетона. Как известно, в обычном бетоне при неизменном расходе цемента с увеличением количества воды, как правило, его прочность снижается.
Количество воды, которое при данных параметрах уплотнения обеспечивает наилучшую удобоукладываемость и наибольшую плотность легкобетонной смеси, называют оптимальным. Практически оптимальное количество воды можно устанавливать или непосредственно по прочности бетона или приближенно — по наибольшей объемной массе и выходу бетона. Легкобетонные смеси с оптимальным количеством воды обладают повышенной жесткостью и применяются при изготовлении изделий с виброуплотнением в горизонтальных формах. В тех случаях, когда по условиям производства требуются подвижные смеси (например, при изготовлении тонкостенных изделий в вертикальных формах), подбирают смеси с заданной подвижностью. Однако последние менее экономичны, так как требуют на 20—30% больше расхода вяжущего.
Немаловажное влияние на прочность бетона оказывает способность пористых заполнителей в процессе приготовления и укладки смеси поглощать воду, а затем постепенно отдавать ее в твердеющий цементный камень. Это свойство пористых заполнителей, названное проф. М.3. Симоновым «самовакуумированием», создает благоприятные условия для твердения цементного камня, что в конечном счете приводит к повышению его плотности и прочности и обеспечивает лучшее сцепление с зернами заполнителя.
Величина объемной массы и прочность бетона зависят также тщательности перемешивания и степени уплотнения смеси. Тщательное перемешивание смеси обеспечивает лучшую ее однородность, что позволяет уменьшить расход вяжущего. В результате повышения степени уплотнения происходит более плотная укладка смеси, что приводит к значительному повышению прочности бетона (иногда вдвое и более).
Как установлено Н. А. Поповым, повышение прочности легкого бетона пропорционально корню квадратному из величины, характеризующей работу уплотнения смеси. При этом наивысший эффект достигается для бетонов, изготовленных из смесей с малой подвижностью и небольшим расходом вяжущего.
Таким образом, в результате тщательного уплотнения смеси достигается значительная экономия вяжущего без снижения прочности бетона. Если учесть, что с повышением плотности укладки зерен увеличивается содержание легкого заполнителя в единице объема смеси, то при изготовлении равнопрочных бетонов интенсивное уплотнение легкобетонных смесей обеспечивает значительное сокращение расхода вяжущего практически без увеличения объемной массы бетона. В некоторых случаях объемная масса бетона даже уменьшается.
Легкобетонные смеси. По сравнению с обычными (тяжелыми) бетонными смесями легкобетонные смеси обладают рядом особенностей, связанных главным образом со своеобразным строением и свойствами пористых заполнителей. В отличие от обычных смесей, на удобоукладываемость легкобетонных смесей, помимо величины сил трения между отдельными компонентами, существенное влияние оказывает объемная масса смеси, которая в зависимости от вида, свойств и количества легких заполнителей может колебаться в значительных пределах. Удобоукладываемость легкобетонных смесей улучшается не только с уменьшением сил трения, но и при увеличении объемной массы смеси.
Повышение подвижности легкобетонных смесей можно обеспечить введением гидрофобизующих добавок (например, мылонафта). При этом влияние таких добавок на подвижность смесей сказывается тем сильнее, чем меньше в них вяжущего и песка. Гидрофильные вещества (например, сульфитно-дрожжевая бражка) подвижность легкобетонных смесей практически не изменяют.
Неправильная форма и шероховатая поверхность зерен большинства пористых заполнителей приводит к резкому увеличению сил трения между ними, благодаря чему легкобетонные смеси при оптимальных расходах воды относятся в большинстве случаев к жестким смесям. Легкобетонные смеси на пористом гравии (например, керамзите) с меньшей наружной поверхностью зерен по сравнению со смесями на пористом щебне отличаются повышенной удобоукладываемостью.
Кроме того, пористый щебень и песок из-за сильно развитой поверхности и неправильной формы зерен обладают увеличенным объемом межзерновых пустот, для заполнения которых требуется в 1,5-2 раза больше цементного теста, чем в обычных бетонах с тяжелым заполнителем.
В зависимости от удобоукладываемости легкобетонные смеси делят на жесткие с показателем жесткости более 15 с, малоподвижные с ОК 0,5-2 см и подвижные с ОК более 2 см.
Заполнители для легкого бетона
Для изготовления лёгкого бетона применяют пористые заполнители, которые могут быть органические и неорганические, а в качестве вяжущего используют обычный и быстротвердеющий портландцемент или шлакопортландцемент. Так же как и плотные, пористые заполнители делятся на мелкие и крупные. Крупный заполнитель, такие как пористый гравий или пористый щебень имеют размер частиц от 5 до 40 мм и делятся на по фракциям: 5-10, 10-20 и 20-40 мм. Мелкий пористый заполнитель имеет размер частиц менее 5 мм, таким например является пористый песок. Мелкий заполнитель, в частности пористый песок, делится на две фракции: от 1,2 до 5 мм это крупный песок, и менее 1,2 мм это мелкий песок.
Так же пористые заполнители делятся на марки по плотности, которые могут быть от 250 до 1100 кг/куб.м .
Органические заполнители.
При возведении теплоизоляционных конструкций и некоторых конструкционно-теплоизоляционных конструкций, используют органические заполнители для бетона. Такими заполнителями могут являться древесина, хлопчатник, костра и гранулы пенополистирола для приготовления стиропорбетона.
Неорганические заполнители.
Пористые заполнители неорганического происхождения делятся на природные и искусственные. Природные заполнители получают путём простого рассева, либо рассева с дроблением горных пород, таких как известняк, туф, пемза.
Искусственными пористыми заполнителями являются продукты из минерального сырья, которое было подвержено термической обработке, которые в свою очередь делятся на специально изготовленные и побочные продукты топливной и металлургической промышленности.
Неорганические заполнители искусственного происхождения.
Гравий керамзитовый.
Это специально изготовленный заполнитель, который получается после обжига гранулированной вспучивающейся глины. Данный заполнитель обладает сразу двумя положительными характеристиками он и лёгкий и прочный одновременно, его плотность может варьироваться от 250 до 800 кг/куб.м .
Гранулы после обжига покрываются прочной оболочкой, что и придаёт ей высокую прочность. В разрезе, керамзитовые гранулы имеют пористую структуру, что и придаёт им легкость. Благодаря двум этим важным характеристикам, керамзитовый гравий является самым распространённым заполнителем для пористого бетона.
Кроме самого керамзита, в качестве заполнителя применяют и керамзитовый песок, который получается в момент приготовления керамзитового гравия, но в небольших количествах и имеет размер зерен до 5 мм.
Так же керамзитовый песок может быть получен при обжиге гранул во взвешенном состоянии, либо путём дробления самого керамзитового гравия.
Шлаковая пемза.
Это тоже, специально изготовленный заполнитель, который получается после резкого охлаждения расплавленных металлургических доменных шлаков, что в последствии приводит к их вспучиванию. После дробления и рассеивания шлаковой пемзы получают пористый щебень.
В тех районах где металлургическая промышленность развита неплохо, распространено изготовление шлаковой пемзы, так как её производство обходится намного дешевле, чем производство керамзита.
Вспученный перлит.
Перлиты, а так же обсидианы являются водосодержащими вулканическими стеклообразными породами, которые после обжига, при температуре от 950 до 1200°С , увеличиваются в объёме, примерно в 10-20 раз, из-за выделения воды, после чего и получается вспученный перлит.
Вспученный перлит применяют для производства не только легких бетонов, но и теплоизоляционных материалов.
Вспученный вермикулит.
По методу производства и применению вспученный вермикулит аналогичен предыдущему заполнителю, только вермикулит получается путём обжига водосодержащих слюд.
Металлургический гранулированный шлак.
Данный заполнитель является побочным продуктом металлургической промышленности, который образуется путём металлургических процессов на производстве и выглядит как песок с крупными зёрнами около 5-7 мм, а некоторые могут достигать до 10 мм.
Топливные отходы и шлаки.
Это пористые материалы в виде небольших кусков, которые были получены в результате спекания неорганических веществ, которые содержатся в угле. Топливные шлаки также являются лишь побочным продуктом, который получается в топке в качестве побочного продукта при сжигании твёрдого топлива, таких как: каменный и бурый уголь, антрацит, торф, сланцы, древесина и другие.
После получения шлаков, их подвергают легкому дроблению и рассеву для удаления вредных для бетона примесей, например несгоревшего угля.
Так же используют и золу, для приготовления зольного и глинозольного гравия.
Аглопорит.
Получают при помощи агломерационной машины, на решётках которой обжигают глиносодержащее сырьё, лессовые и глинистые породы, а так же отходы промышленности..
Для приготовления легкого бетона используют следующие крупные заполнители
Искусственные пористые заполнители отличаются более высокими качествами, чем обычные топливные шлаки, и позволяют получать более прочные и стойкие бетоны, а также бетоны с меньшим объемным весом
Легкие (пористые) заполнители
Заполнителями для легких бетонов служат:
- пористые горные породы (пемза, щебень из вулканических туфов и лав, известковых туфов, ракушечников и т. п.);
- широко распространенные отходы промышленности:
- а) топливные (котельные) шлаки, т. е. отходы oт сжигания угля в промышленных, паровозных и тому подобных топках;
- б) пористые гранулированные доменные шлак и, применяемые в бетоне в качестве пористого мелкого заполнителя;
Специально изготовляемые (искусственные) пористые заполнители
- а) керамзит, получаемый в результате вспучивания глинг глинистых сланцев и тому подобного сырья, при особом (ускоренном) режиме обжига (керамзитовый гравий и керамзитовый песок);
- б) шлаковая пемза (термозит) пористые доменные шлаки, вспученные благодаря особому режиму охлаждения расплавленных шлаков;
- в) вторичные (или агломерированные) шлаки, получаемые спеканием зол или топливных шлаков на особых спекательных устройствах.
Искусственные пористые заполнители отличаются более высокими качествами, чем обычные топливные шлаки, и позволяют получать более прочные и стойкие бетоны, а также бетоны с меньшим объемным весом.
Легкие (пористые) заполнители должны иметь объемный вес в рыхло насыпанном состоянии менее 1000 кг/м3; чаще же всего они имеют fо = 600—800 кг/м3, т. е. примерно вдвое меньший, чем у обычного песка и гравия. Вследствие большой пористости прочность легких заполнителей значительно меньше, а поверхность их значительно больше, чем у обычного песка и гравия (или тяжелого щебня).
По крупности легкие заполнители делятся на
- а) крупные заполнители (легкий щебень)— с размером кусков от 5 до 40 мм;
- б) мелкие заполнители (легкий песок), состоящие из частиц с размерами меньше 5 мм.
Для неармироёанных легких бетонов применяют самые дешевые местные заполнители (чаще всего топливные шлаки); для армированных заполнители более высокого качества: пемзу, туфы и искусственные пористые заполнители, не содержащие вредных для цемента или нестойких примесей.
Металлургические шлаки
Металлургические шлаки - заполнители для легких бетонов должны отвечать следующим требованиям:
- а) должны иметь металлических включений (повесу) не более 5%, землистых примесей — не более 3%, органических примесей — не более 1%;
- б) должна отсутствовать свободная окись кальция или магния;
- в) кусковые шлаки следует проверять на устойчивость против распада, при отсутствии внешних признаков распада шлаки, пролежавшие в отвалах свыше трех лет или пролежавшие в штабелях свыше двух месяцев в подготовленном для работы состоянии, не проверяют;
- г) кислые доменные шлаки с остеклованной поверхностью допускаются в бетонах марки до 150 включительно, содержание лещадок в таких шлаках не должно превышать 15%;
- д) предел прочности при сжатии кусковых шлаков должен быть не ниже 100% проектной марки бетона;
- е) должны выдерживать не менее 25 циклов замораживания при испытании на морозостойкость;
ж) водопоглощение должно быть не более 80% от объема пор; - з) объемный вес шлаков для тяжелых бетонов может не устанавливаться, для легких бетонов (с объемным весом 1 600—1 800 кг/м3) допускаются пористые шлаки с объемным весом в россыпи 1 200 кг/м3.
К котельным шлакам предъявляются следующие требования:
- а) количество несгоревших частиц угля в шлаках из каменных углей не должно превышать 30% от общего веса, а в шлаках из бурых углей — 15%;
- б) количество тяжелых остекловавшихся частиц, увеличивающих объемный вес шлака и имеющих плохое сцепление с вяжущими веществами, не должно быть более 10% по весу;
- в) содержание соединений серы (в пересчете на S03) должно составлять не более 20%;
- г) объемный вес угольного шлака в сухом рыхлом состоянии должен составлять не более 850 кг/м3.
Пемза
— материал вулканического происхождения — добывается в Армении и на Северном Кавказе и применяется преимущественно в южных районах.
- представляют собой также вулканическую породу, несколько более плотную, чем пемза. Главные месторождения туфов находятся в Армении.
Различают известковый туф (травентин), кремнистый (кремнистые опаловые отложения тёплых или горячих источников) и вулканический туф — выбросы вулканов, сцементированные в плотную горную породу. Используются как строит, материал. Особенно известны розовые, желтые черные.
Керамзит
- представляет собой искусственный вспученный, пористый материал в виде гравия или щебня с замкнутыми ячейками, получаемый из легкоплавких глин посредством быстрого обжига их до температуры 1100—1150°. Объемный вес 300-900 кг/м2, служит заполнителем для легкого бетона.
Преимущество керамзита в том, что его производство можно организовать в любом месте, где имеются глины, пригодные для изготовления кирпича. Керамзит применяется в бетонах, идущих для изготовления легких блоков и панелей.
Заполнители для легких бетонов
Заполнители для легких бетонов должны иметь пористую структуру и малый объемный вес. Наиболее употребительные заполнители и их объемные веса (в кг/м3).
Шлаки:
Для приготовления легкого бетона используют следующие крупные заполнители
Значительный диапазон требований к легким бетонам различных видов объясняется большим разнообразием их структуры и характеристик применяемых материалов, от которых зависят свойства легкобетонных смесей и затвердевшего бетона.
Свойства легкобетонной смеси принято характеризовать ее объемным весом, удобоукладываемостью (подвижностью и жесткостью) или рассливаемостью и структурой (объемом межзерновых пустот).
Объемный вес бетонной смеси является одной из важных характеристик, определяющих ее однородность, а следовательно, и постоянство свойств затвердевшего бетона —его объемный вес и прочность. На объемный вес смеси оказывают влияние относительное содержание и свойства крупного и мелкого заполнителей, объем межзерновых пустот смеси, степень последующего уплотнения бетона. Эти факторы влияют и на расход вяжущего в бетонной смеси.
Удобоукладываемость легкобетонных смесей зависит от структуры и состава бетона. Смеси с межзерновой пористостью (малопесчаные и крупнопористые) могут быть только жесткими. Смеси плотной структуры могут быть жесткими и подвижными, а поризо-ванной — подвижными и малоподвижными. При этом большую подвижность назначают для поризованной беспесчаной смеси. Ориентировочные значения подвижности или жесткости легкобетонной смеси приведены в табл. 2.
Таблица 2. Показатели жесткости или подвижности легкобетонной смеси к началу формирования конструкций
Вид конструкций и способ формования Плотная смесь Поризованная смесь осадка, конуса, см жесткость, сек беспесчаная осадка конуса, см жесткость, сек осадка конуса, см жесткость, сек Тонкостенные железобетонные изделия, бетонируемые в кассетных виброформах Плоские панели и плиты, бетонируемые на виброплощадках Те же изделия с уплотнением вибронасадками Те же изделия, формуемые на виброплощадках с пригрузом и вибровкладышами с немедленной распалубкойВ легкобетонных смесях как недостаточное, так и избыточное содержание воды (по сравнению с оптимальным для заданных условий уплотнения) приводит к уменьшению плотности, а следовательно, и прочности бетона.
Подвижность и жесткость плотной бетонной смеси определяют такими же методами, как у обычных тяжелых бетонов.
Смеси неплотной структуры, в которых объем межзерновых пустот превышает 3%, могут в процессе уплотнения вибрированием расслаиваться. Это свойство чаще проявляется в смесях, приготовленных с избыточным количеством воды и содержащих мелкий и крупный заполнители с большой разницей значений объемного веса или из-за недостаточного количества мелких фракций в песке.
Такие смеси характеризуются не жесткостью, а расслаиваемо-стью. Показатель расслаиваемости определяют по ГОСТ , выявляя величину изменения объемного веса в верхних и нижних частях образцов уплотненной бетонной смеси.
Качество смеси признают удовлетворительным, если величина показателя расслаиваемости не превышает 10%.
Введение в малопесчаную смесь микропенообразующей (воздухововлекающей) добавки увеличивает объем поризованной растворной составляющей до полного заполнения межзерновых яустот в крупном заполнителе. Такая бетонная смесь приобретает псевдо-плотную (поризованную) структуру; она становится менее жесткой и нерасслаиваемой в процессе ее уплотнения вибрированием.
Из свойств легкого бетона основными являются объемный вес и прочность при сжатии, контролируемые при производстве изделий. Эти свойства для легкого бетона также взаимозависимы.
Большое влияние на объемный вес и прочность легких бетонов оказывают зерновой состав и свойства заполнителей. При увеличении относительного содержания крупного заполнителя в составе бетона его объемный вес и прочность уменьшаются. Яркой иллюстрацией этой зависимости являются свойства крупнопористого бетона, объемный вес и прочность которого при прочих равных условиях наименьшие.
С увеличением расхода вяжущего прочность и объемный вес легкого бетона возрастают вследствие повышенного содержания в бетоне более прочного и тяжелого цементного камня.
С повышением активности цемента прочность цементного камня увеличивается; поэтому при неизменном объемном весе легкого бетона прочность его возрастает, хотя и в меньшей степени, чем у тяжелого бетона. Это увеличение прочности носит затухающий характер, и в зависимости от свойств заполнителя она может оказаться предельной, несмотря на повышение активности и расхода цемента. Однако применение цементов несколько более высокой активности позволяет уменьшить их расход и этим снизить объемный вес бетона.
Объем применения легких бетонов с каждым годом увеличивается в связи с развитием индустриальных методов строительства, переходом к монтажу стен, перекрытий и перегородок из крупноразмерных бетонных и железобетонных готовых деталей, изготовляемых на специальных заводах.
Состав легких бетонов на пористых заполнителях
Легкие бетоны с пористыми заполнителями изготовляемые из вяжущих, воды и легких заполнителей; такие бетоны в зависимости от веса примененных заполнителей имеют объемный вес от 800 до 1800 кг/м3, а чаще всего 1300—1500 кг/м3;
- легкие крупнопористые бетоны («беспесчаные»), изготовляемые из цемента, воды и гравия (или щебня), одинаковой по возможности крупности; отсутствие в таких бетонах песка придает им — при ограниченном количестве цемента крупнопористое строение; объемный вес таких бетонов составляет от 600 до 2000 кг/м3 в зависимости от объемного веса примененного заполнителя и состава бетона;
- особо легкие ячеистые бетоны, изготовляемые в основном из вяжущих (большей частью с добавками, уменьшающими их расход), воды и пенообразующих (пенобетоны) или газообразующих (газобетоны) веществ; такие бетоны имеют объемный вес от 300 до 1200 кг/м3, чаще же всего 500—800 кг/м3.
В области изучения и применения легких- бетонов советские исследователи и инженеры достигли значительных успехов.
В 1929—1933 гг. была впервые разработана теория легких бетонов (проф. Н. А. Поповым и др.) и легкого железобетона. На основе этих и ряда других работ легкие бетоны с пориогыми заполнителями были широко внедрены в строительство.
Области применения бетонов на местных пористых заполнителях по мере изучения их свойств расширяются. Так, например для элементов гидротехнических сооружений получили применение бетоны на литоидной пемзе (несколько более плотной, чем обычная пемза).
Определение состава легких бетонов
Так как объемный вес пористых заполнителей легкого бетона изменяется в больших пределах, состав легкого бетона удобнее выражать в объемных показателях.
Для определения состава легкого бетона задается проектная марка бетона или его прочность к определенному сроку и с учетом режима твердения, объемный вес и структура бетона, а для бетона с плотной и поризованной структурой — жесткость или подвижность бетонной смеси.
Многообразие видов легких бетонов, пористых заполнителей и их свойств затрудняет разработку единой методики определения их состава. Однако некоторые зависимости, рассмотренные при определении состава тяжелого бетона, сохраняются и для легкого бетона.
Прочность легкого бетона не находится в строгой зависимости от водоцементного отношения. Это объясняется большим влиянием на ее изменение вида и прочности заполнителя, расхода и активности цемента, выраженных в прочности растворной части бетона (рис. 5) и структуры легкого бетона (рис. 6).
Рост прочности бетона с увеличением прочности раствора постепенно уменьшается, и для определенной прочности пористого заполнителя устанавливается предельное ее значение.
Для приготовления высокопрочных легких бетонов, в зависимости от их марки, рекомендуется применять пористые заполнители, прочность которых не ниже указанной в табл. 1.
Для достижения заданного объемного веса легкого бетона, кроме применения соответствующего крупного пористого заполнителя, уменьшают относительный объем и объемный вес растворной части бетона применением более легкого мелкого заполнителя, ограничением расхода цемента (путем повышения его активности) или изменяют структуру бетона. При этом расход цемента в неармированных легких бетонах должен быть не менее 120 кг/м3, в армированных конструктивно-теплоизоляционных — не менее 200 кг/м3, а в конструктивных бетонах — не менее 220 кг/м3.
Минимальная прочность при сжатии крупного пористого заполнителя для приготовления высокопрочных легких бетонов различных марок
Марка бетона | Прочность крупного заполнителя по ГОСТ при применении в кг/см2 | ||||
керамзитового гравия | щебня из аглопорита | щебня из шлаковой пемзы | щебня из природных пористых заполнителей | ||
пемзы | туфов | ||||
200 | 20 | 8 | 10 | 10 | 12 |
250 | 25 | 9 | 11 | 12 | 15 |
300 | 35 | 10 | 12 | 15 | 17 |
350 | 40 | 12 | 13 | 17 | 20 |
400 | 50 | 14 | 15 | 20 | 25 |
500 | 70 | 16 | 20 | 25 | 30 |
В отличие от тяжелых в легких бетонах даже низких марок рекомендуется использовать высокопрочные цементы. Ниже приведены марки цемента, которые целесообразно применять в зависимости от требуемой марки легкого бетона.
Марка легкого бетона | 50—150 | 200—250 | 300 | 350—400 |
Марка цемента | 400 | 400, 500 | 500 | 550 ОБТЦ |
БТЦ | 550 |
Зерновой состав смеси заполнителя влияет на расход цемента в легком бетоне. При использовании фракционированных заполнителей, их соотношение рекомендуется принимать по табл. 3.
Таблица 3. Зерновой состав смеси пористых заполнителей для виброуплотняемых легких бетонов
Вид простого заполнителя | Предельная крупность заполнителя. мм | Содержание фракции в % по объему | ||
менее 1,2 мм | 1,2—5 мм | более 5 мм | ||
Щебень | 10 | 45-65 | 0-20 | 35-55 |
20 | 30-50 | 0-20 | 50-70 | |
40 | 20-35 | 0-20 | 65-80 | |
Гравий | 10 | 40-60 | 0-20 | 40-60 |
20 | 25 - 45 | 0-20 | 55-75 | |
40 | 15-30 | 0-20 | 70-85 |
При этом необходимо учитывать, чтобы принятый зерновой состав пористого заполнителя имел объемный вес, соответствующий оптимальному для легкого бетона данной марки. Меньшее содержание крупной песчаной фракции (1,2—5 мм) принимают; при использовании пористого песка, полученного дроблением. Сильно развитая поверхность его зерен приводит к повышению расхода цемента и ухудшает формуемость бетонной смеси.
Предельную крупность пористого заполнителя
Предельную крупность пористого заполнителя назначают, исходя из тех же условий, что и для тяжелых бетонов. Поскольку крупные зерна пористого заполнителя имеют обычно наименьший объемный вес, увеличение их содержания в легком бетоне снижает его объемный вес. Уменьшение же предельной крупности улучшает формуемость и связность бетонной смеси, а также повышает прочность бетона ввиду увеличения прочности зерен более мелкой фракции пористого заполнителя.
Предельная крупность пористого гравия обычно составляет 40 мм, а крупность пористого щебня, как правило, не должна превышать 20 мм. При этом для бетонов неплотной структуры целесообразно применять пористый гравий не крупнее 20 мм.
Состав легкого бетона плотной структуры определяют в той же последовательности, что и тяжелого, т. е. после предварительного расчета состава легкого бетона по методу абсолютных объемов или с помощью таблиц и графиков уточняют его по результатам опытных замесов.
Предварительно испытывают материалы, применяемые для легкого бетона, с целью проверки соответствия их свойств требованиям ГОСТа на эти материалы и заданным свойствам бетона (объемному весу и прочности).
Расход цемента принимают по табличным данным, полученным по обобщенным результатам испытания легких бетонов различных марок, приготовленных из материалов с оптимальными свойствами.
Ориентировочные значения расхода цемента для опытных замесов с учетом указаний, приведены в табл. 4.
Таблица 4. Ориентировочный расход цемента марки 400 для приготовления легкого бетона
Заполнитель | Расход цемента в кг/м3 для бетона марки | |||||
50 | 75 | 100 | 150 | 200 | 300 | |
Керамзитовый гравий | 200-230 | 210-250 | 220-270 | 240-300 | 320-400 | 420-550 |
Аглопорит, шлаковая пемза, туф, пемза природная | 250-270 | 280-300 | 300-330 | 300-380 | 350-420 | — |
Меньше расходуется цемента в смесях жесткостью 20—30 сек, больше в смесях подвижностью 3—5 см. Прочность пористого крупного заполнителя принята оптимальной для данной марки бетона. Замена пористого песка кварцевым в бетонах марки 200 и более снижает расход цемента на 10—15%.
Водопотребность легкобетонной смеси
Водопотребность легкобетонной смеси определяется в зависимости от заданной удобоукладываемости, с учетом качества применяемых заполнителей и расхода цемента. Ориентировочные значения водопотребности смеси указаны в табл. 5.
Таблица 5. Ориентировочный расход воды для приготовления смесей на пористых заполнителях предельной крупностью 20 мм при расходе портландцемента до 400 кг/м2.
Читайте также: