Частота измерений температуры бетона при прогреве
Технологическая карта на электродный прогрев конструкций из монолитного бетона
Технологическая карта на электродный прогрев конструкций из монолитного бетона при отрицательных температурах воздуха разработана ОАО ПКТИпромстрой в соответствии с протоколом семинара-совещания «Современные технологии зимнего бетонирования», утвержденным первым заместителем премьера Правительства Москвы В.И. Ресиным, и техническим заданием на разработку комплекта технологических карт на производство монолитных бетонных работ при отрицательных температурах воздуха, выданным Управлением развития генплана г. Москвы.
Карта содержит организационно-технологические и технические решения по электродному прогреву конструкций из монолитного бетона, применение которых должно способствовать ускорению работ, снижению затрат труда и повышению качества возводимых конструкций в зимних условиях.
В технологической карте приведены область применения, организация и технология выполнения работ, требование к качеству и приемке работ, калькуляция затрат труда, график производства работ, потребность в материально-технических ресурсах, решения по технике безопасности и технико-экономические показатели.
Исходные данные и конструктивные решения, применительно к которым разработана карта, приняты с учетом требований СНиП, а также условий и особенностей, характерных для строительства в г. Москве.
Технологическая карта предназначена для инженерно-технических работников строительных и проектных организаций, а также производителей работ, мастеров и бригадиров, связанных с производством бетонных работ.
Технологическую карту разработали:
Ю.А. Ярымов - гл. инженер проекта, руководитель работы, И.Ю. Томова - ответственный исполнитель, А.Д. Мягков, к.т.н. - ответственный исполнитель от ЦНИИОМТП, В.Н. Холопов, Т.А. Григорьева, Л.В. Ларионова, И.Б. Орловская, Е.С. Нечаева - исполнители.
В.В. Шахпаронов, к.т.н. - научно-методическое руководство и редактирование,
С.Ю. Едличка, к.т.н. - общее руководство разработкой комплекта технологических карт.
1. Область применения . 2
2. Организация и технология выполнения работ. 2
3. Требования к качеству и приемке работ . 5
4. Калькуляция затрат труда . 8
5. График производства работ . 9
6. Потребность в материально-технических ресурсах . 10
7. Решения по технике безопасности . 10
8. Технико-экономические показатели . 11
1. ОБЛАСТЬ ПРИМЕНЕНИЯ
1.1. Областью применения электродного прогрева монолитных конструкций в соответствии с «Руководством по электротермообработке бетона» (НИИЖБ, Стройиздат, 1974) являются монолитные бетонные и малоармированные конструкции. Применение этого метода наиболее эффективно для фундаментов, колонн, стен и перегородок, плоских перекрытий, бетонных подготовок под полы.
В зависимости от принятой схемы расстановки и подключения электродов электродный прогрев разделяется на сквозной, периферийный и с использованием в качестве электродов арматуры.
1.2. Сущность электродного прогрева заключается в том, что выделение тепла происходит непосредственно в бетоне при пропускании через него электрического тока.
1.3. В технологической карте приводятся:
- схемы электродного прогрева;
- указания по подготовке конструкций к бетонированию, прогреву и требования к готовности предшествующих работ и строительных конструкций;
- схема организации рабочей зоны на время производства работ;
- методы и последовательность производства работ, описание установки и подключения электрооборудования и осуществления прогрева бетона;
- электрические параметры прогрева;
- профессиональный и численно-квалификационный состав рабочих;
- график выполнения работ и калькуляция затрат труда;
- указание по контролю качества и приемке работ;
- решения по технике безопасности;
- потребность в необходимых материально-технических ресурсах, электротехническом оборудовании и эксплуатационных материалах;
- рекомендации по энергосбережению;
1.4. Технологической картой рассматривается электродный сквозной прогрев монолитного фундамента объемом 3,16 м 3 размерами в плане 1800 ´ 1800 мм и высотой 1200 мм с применением металлической опалубки.
1.5. Расчет прогрева произведен с учетом температуры наружного воздуха -20 °С, применения гидро- и теплоизоляции в виде полиэтиленовой пленки и минераловатных матов толщиной 50 мм, металлической опалубки, утепленной минераловатными матами толщиной 50 мм и защищенной фанерой толщиной 3 мм, удельного электрического сопротивления бетонной смеси в начале прогрева 9 Ом × м и прочности бетона к моменту остывания до 0 °С - 50 % R 28 .
1.6. Численно-квалификационный состав рабочих, график работы и калькуляция трудовых затрат, а также потребности в необходимых материально-технических ресурсах и технико-экономические показатели определены исходя из расчета прогрева шести фундаментов, расположенных на одной захватке рабочей зоны.
1.7. Электродный прогрев монолитных конструкций может быть совмещен с другими способами интенсификации твердения бетона, например предварительным прогревом бетонной смеси, использованием различных химических добавок.
Применение противоморозных добавок, в состав которых входит мочевина, не допускается из-за разложения мочевины при температуре выше 40 °С. Применение поташа в качестве противоморозной добавки не разрешается вследствие того, что прогретые бетоны с этой добавкой имеют значительный (более 30 %) недобор прочности, характеризуются пониженной морозостойкостью и водонепроницаемостью.
1.8. Привязка настоящей технологической карты к иным конструкциям и условиям производства работ при отрицательных температурах воздуха требует внесения изменений в график работ, калькуляцию трудовых затрат, потребность в материально-технических ресурсах и электрические параметры прогрева.
2. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ.
2.1. До начала работ по электродному прогреву бетонной смеси выполняют следующие подготовительные операции:
- на ровной площадке вблизи захватки устанавливают комплектную трансформаторную подстанцию КТП ТО-80/86;
- подключают КТП ТО-80/86 к питающей сети и опробывают на холостом ходу;
- изготавливают инвентарные секции шинопроводов (рис. 1);
- устанавливают секции шинопроводов у обогреваемых конструкций (рис. 2);
- выполняют мероприятия по технике безопасности;
- соединяют шинопроводы между собой кабелем марки КРПТ 3 ´ 25; кабелем марки КРПТ 3 ´ 50 подсоединяют их к комплектной подстанции КТП ТО-80/86 или другим трансформаторам, используемых для этих целей;
- очищают от мусора, снега, наледи и устанавливают в рабочее положение опалубку и арматуру.
2.2. Сразу же после укладки бетонной смеси в опалубку производят укрытие открытых поверхностей бетона гидроизоляцией (полиэтиленовая пленка) и теплоизоляцией (минераловатные маты толщиной 50 мм).
2.3. Через слои гидро- и теплоизоляции в бетонную смесь забивают электроды согласно схемы (рис. 3).
2.4. В качестве электродов приняты стальные стержни диаметром 6 мм, длиной 1000 мм.
2.5. Электроды устанавливают таким образом, чтобы их концы выступали из бетона на 10 - 20 см.
Расстояние между электродами принимают в зависимости от температуры наружного воздуха и принятого напряжения (таблица 1).
2.6. Производят коммутацию электродов между собой и подключают их к секциям шинопроводов (рис. 3).
2.7. Подключают шинопроводы к питающей сети (рис. 4).
2.8. Перед подачей напряжения на электроды проверяют правильность их установки и подключения, качество контактов, расположение температурных скважин или установленных термодатчиков, правильность укладки утеплителя.
2.9. Подают напряжение на электроды в соответствии с электрическими параметрами (таблица 1).
2.10. Сразу после подачи напряжения дежурный электрик повторно проверяет все контакты, устраняет причину короткого замыкания, если оно произошло.
2.11. При необходимости отключения стержневого электрода рядом устанавливают новый и подключают его.
Электрические параметры электродного прогрева
Температура наружного воздуха, °С
Напряжение питания, В
Расстояние между электродами, см
Удельная мощность, кВт/м 3
2.12. Через каждые два часа во время изотермического прогрева замеряют температуру бетона. Для замеров температуры устраивают специальные скважины (рис. 5, 6).
2.13. Прогрев бетонной смеси осуществляют в соответствии с нижеприведенным графиком при скорости подъема температуры -6 °С/час.
Во время разогрева температуры бетона контролируется не реже чем через 1 час.
2.14. В период подъема температуры, на стадии изотермического прогрева, а также после каждого переключения напряжения необходимо следить за показаниями измерительных приборов, состоянием контактов и отпаек.
2.15. Скорость разогрева бетона регулируется повышением или понижением напряжения на низкой стороне трансформатора.
2.16. При изменении температуры наружного воздуха в процессе прогрева выше или ниже расчетной соответственно понижают или повышают напряжение на низкой стороне трансформатора.
2.17. Прогрев осуществляется на пониженном напряжении 55 - 95 В.
2.18. Набор прочности бетона при различных температурах его выдерживания определяется графиком (рис. 7).
Пример определения прочности по графику приведен на рис. 8.
2.19. Скорость остывания бетона по окончании тепловой обработки для конструкций с модулем поверхности Мп = 5 - 10 и Мп > 10 - не более соответственно 5 °С и 10 °С в час. Температуру наружного воздуха замеряют один-два раза в сутки, результаты замеров фиксируются в журнале.
2.20. Не реже двух раз в смену, а в первые три часа с начала прогрева бетона через каждый час, измеряют силу тока и напряжение в питающей цепи. Визуально проверяют отсутствие искрения в местах электрических соединений.
2.21. Прочность бетона обычно проверяют по фактическому температурному режиму. После распалубливания прочность бетона, имеющего положительную температуру, рекомендуется определять с помощью молотка конструкции НИИМосстроя, ультразвуковым способом или высверливанием и испытанием кернов.
2.22. Теплоизоляция и опалубка могут быть сняты не ранее того момента, когда температура бетона в наружных слоях конструкции достигает плюс 5 °С и не позже, чем слои остынут до 0. Не допускается примерзания опалубки гидро- и теплоизоляции к бетону.
2.23. Для предотвращения появления трещин в конструкциях перепад температур между открытой поверхностью бетона и наружным воздухом не должен превышать:
а) 20 °С для монолитных конструкций с Мп < 5;
б) 30 °С для монолитных конструкций с Мп > 5.
В случае невозможности соблюдения указанных условий поверхность бетона после распалубливания укрывают брезентом, толью, щитами и т.д.
2.24. Подготовку оснований и укладку бетонной смеси в конструкцию при отрицательных температурах воздуха производят с учетом следующих требований:
состояние оснований, на которые укладывают бетонную смесь, а также способ укладки должны исключать возможность деформации основания и замерзания бетона в контакте с основанием до приобретения им требуемой прочности;
снимать наледь с опалубки арматуры с помощью пара или горячей воды не допускается. При температуре воздуха ниже -10 °С арматуру диаметром более 25 мм, а также арматуру прокатных профилей и крупные металлические закладные детали следует отогревать до положительной температуры. Все выступающие закладные части и выпуски должны быть утеплены;
укладку бетонной смеси производят непрерывно, без перевалок, средствами, обеспечивающими минимальное охлаждение смеси при ее подаче;
температура бетонной смеси, уложенной в опалубку, должна быть не ниже +5 °С.
2.25. Электродный прогрев бетона фундаментов выполняет звено из 3-х человек (табл. 2).
Распределение операций по исполнителям
Состав звена по профессиям
Электромонтер V р.
Подсоединения КТП ТО-80/86 к питающей сети и к секциям шинопровода, расстановка и коммутация электродов
Электромонтер III р.
Расстановка шинопроводов, расстановка и коммутация электродов
Заготовка электродов, устройство гидро- и теплоизоляции
2.26. Прогрев монолитных фундаментов осуществляется в следующей последовательности:
бетонщик заготавливает из стали диаметром 6 мм электроды необходимой длины и в нужном количестве;
электромонтер V р. производит разделку концов жил кабеля, подсоединяет его к трансформаторной подстанции КТП ТО-80/86;
электромонтер III р. расставляет инвентарные секции шинопроводов вдоль захватки, соединяет их между собой;
электромонтер V р. подсоединяет секции шинопроводов к трансформаторной подстанции, производит заземление и опробывает работу на холостом ходу. После укладки бетонной смеси в опалубку бетонщик укрывает верхние поверхности конструкции гидро- и теплоизоляцией;
электромонтеры V и III р. расставляют электроды в конструкцию согласно выбранной схемы, производят коммутацию электродов между собой и подключают их к секциям шинопровода. Подают напряжение на электроды. Рекомендации по энергосбережению.
В целях энергосбережения при электродном прогреве монолитных конструкций рекомендуется:
- при определении средств и продолжительности транспортирования бетонной смеси не допускать возможности охлаждения ее более чем установлено технологическим расчетом, нарушения однородности и снижения заданной подвижности на месте укладки;
- применять бетонные смеси более высокой относительной прочности при малой продолжительности прогрева (портландцемент, быстротвердеющий портландцемент);
- использовать химические добавки с целью сокращения продолжительности термообработки, улучшения электропроводности бетонных смесей и получения повышенной прочности, приобретаемой бетоном сразу после прогрева;
- применять максимально допустимую температуру термообработки бетона, с учетом нарастания прочности бетона при остывании;
- следить за качеством и плотностью соединений контактов;
- не допускать намокания теплоизоляционных слоев;
- надежно производить теплоизоляцию поверхности бетона и опалубки, подвергающихся охлаждению;
- соблюдать режим электрообработки.
3. ТРЕБОВАНИЯ К КАЧЕСТВУ И ПРИЕМКЕ РАБОТ
3.1. Контроль качества электродного прогрева монолитной конструкции при отрицательных температурах воздуха производят в соответствии с требованиями СНиП 3.01.01-85* «Организация строительного производства», СНиП III-4-80* «Техника безопасности в строительстве» и СНиП 3.03.01-87 «Несущие и ограждающие конструкции».
3.2. Производственный контроль качества электродного прогрева осуществляют прорабы и мастера, с участием специалистов энергетических служб строительных организаций.
3.3. Производственный контроль включает входной контроль электротехнического оборудования, эксплуатационных материалов и бетонной смеси, операционный контроль отдельных производственных операций и приемочный контроль требуемого качества монолитной конструкции.
3.4. При входном контроле электротехнического оборудования, эксплуатационных материалов и бетонной смеси проверяют внешним осмотром их соответствие нормативным и проектным требованиям, а также наличие и содержание паспортов, сертификатов и других сопроводительных документов.
При операционном контроле проверяют соблюдение состава подготовительных операций, технологии наладки электрообогревающего оборудования и устройств, укладки бетона в опалубку бетонируемой конструкции в соответствии с требованиями СНиП, процесс электродного прогрева, температуру, силу тока и напряжение в соответствии с расчетными данными.
При приемочном контроле проверяют качество монолитной конструкции в результате электродного прогрева:
Результаты операционного контроля фиксируются в журнале работ.
Основными документами при операционном контроле является настоящая технологическая карта и указанные в карте нормативные документы, перечни операций контролируемых производителем работ (мастером), данные о составе, сроках и способах контроля, требуемые прочностные показатели фундамента в результате прогрева (табл. 3).
3.5. Контроль температуры прогреваемого бетона следует производить техническими термометрами или дистанционно с помощью термодатчиков, устанавливаемых в скважину. Число точек измерения температуры устанавливают в среднем из расчета не менее одной точки на каждые 3 м 3 бетона, 6 м длины конструкции, 50 м 2 площади перекрытия, 40 м 2 площади подготовки полов и т.д.
Температуру бетона проверяют не реже чем через 2 часа.
Не реже двух раз в смену, а в первые три часа с начала прогрева бетона через каждый час, измеряют силу тока и напряжение в питающей цепи. В местах соединения проводов не должно быть искрения.
3.6. Скорость подъема температуры при тепловой обработке бетона не выше 6 °С/ч;
- скорость остывания бетона по окончании тепловой обработки для конструкций с модулем 5 - 10 - 5 °С/ч
свыше 10 - 10 °С/ч
3.7. Контроль прочности бетона осуществляют по температуре бетона в процессе выдерживания.
Прочность прогретого бетона, имеющего положительную температуру, определяют с помощью молотка НИИМосстроя, ультразвуковым способом либо высверливанием кернов и испытанием.
СОСТАВ И СОДЕРЖАНИЕ ПРОИЗВОДСТВЕННОГО КОНТРОЛЯ КАЧЕСТВА
Прораб или мастер
Операции, подлежащие контролю
Операции при входном контроле
Операции по устройству фундамента и прогреву бетона
Операции при приемочном контроле
проверка изоляции проводов и работоспособность коммутационной аппаратуры, трансформаторов и др. электрооборудования, используемого в работе
устройство защитного ограждения и световой сигнализации на участке работ
очистка основания опалубки, арматуры от снега, наледи. Установка стержневых электродов. Утепление конструкции
укладка бетона в конструкцию монолитного фундамента
контроль величины силы тока и напряжения питающей цепи
контроль температуры бетона
контроль прочности бетона
соответствие готового монолитного фундамента требованиям проекта
визуальная и по приборам
до начала бетонирования
до и после бетонирования
в процессе электрообогрева бетона
Кто привлекается к контролю
энергетик строительной организации
электромонтеры и лаборатория
4. КАЛЬКУЛЯЦИЯ ЗАТРАТ ТРУДА
Калькуляция затрат труда составлена на электродный прогрев шести фундаментов с общим объемом бетона 19 м 3 .
Норма времени, чел.-час
Затраты труда чел.-час
Установка трансформаторной подстанции в зоне прогрева
Переноска и установка на место инвентарных секций шинопровода при массе секций 10 кг
Опытные данные ЦНИИОМТП
Установка защитного ограждения
электромонтер III р. - 1 чел.
Установка магистрали и присоединении к ней электродов, присоединение трансформатор ной подстанции, укладка электродов в тело бетона. Снятие подводящих проводов магистрали после прогрева
1 м 3 прогретого бетона
§ Е23-4-14 табл. 3 п. 2
Проверка состояния кабеля мегометром
Электропрогрев бетонной смеси
Устройство гидро- и теплоизоляции
Снятие гидро- и теплоизоляции
Отсоединение секций шинопроводов
5. ГРАФИК ПРОИЗВОДСТВА РАБОТ
6. ПОТРЕБНОСТЬ В МАТЕРИАЛЬНО-ТЕХНИЧЕСКИХ РЕСУРСАХ
Комплектная трансформаторная подстанция для обогрева бетона
Мощность - 80 кВт
Напряжение 55, 65, 75, 85, 95 В
Инвентарные секции шинопроводов
Длина секции - 1,5 м, масса 10 кг
КРПТ - 3 ´ 25 + 1 ´ 16
Сталь арматурная - электроды
Инвентарное сетчатое ограждение
Полиэтиленовая пленка Тс 0,1 ´ 1400
толщина d = 0,1 мм
С углекислотными огнетушителями
Мощность - 1000 Вт
7. РЕШЕНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ
7.1 При эксплуатации стержневых электродов из арматурной стали и силового питающего электрооборудования помимо общих требований правил безопасного производства работ согласно СНиП III-4-80* «Техника безопасности в строительстве» следует руководствоваться «Правилами технической эксплуатации и безопасности электроустановок промышленных предприятий».
7.2 Электробезопасность на строительной площадке, участках производства работ и рабочих местах необходимо обеспечивать в соответствии с требованиями ГОСТ 12.1.013-78 «Строительство. Электробезопасность. Общие требования». Лица занятые на строительно-монтажных работах, должны быть обучены безопасным способам ведения работ, а также уметь оказать первую доврачебную помощь при электротравме.
7.3 В строительно-монтажной организации должен быть инженерно-технический работник, ответственный за безопасную эксплуатацию электрохозяйства организации, имеющего квалификационную группу по технике безопасности не ниже IV .
7.4 При устройстве электрических сетей необходимо предусматривать возможность отключения всех электроустановок в пределах отдельных участков и объектов производства работ.
7.5 Работы, связанные с присоединением (отсоединением) проводов, должны выполняться специалистами по электротехнике, имеющими соответствующую квалификационную группу по технике безопасности.
7.6 В течение всего периода эксплуатации электроустановок на строительных площадках должны быть установлены знаки безопасности по ГОСТу 12.4.026.76
7.7 Технический персонал, проводящий прогрев бетона, должен пройти обучение и проверку знаний квалификационной комиссией по технике безопасности с получением соответствующих удостоверений. Дежурные электромонтеры должны иметь квалификацию не ниже III группы.
7.8 Рабочих, занятых на прогреве бетона, снабжают резиновыми сапогами или диэлектрическими галошами, а электромонтеров, кроме того, резиновыми перчатками. Подключение нагревательных проводов, замеры температуры техническими термометрами производят при отключенном напряжении.
7.9 Зона, где производится прогрев бетона, должна быть ограждена. На видном месте помещаются предупредительные плакаты, правила по технике безопасности, противопожарные средства, в ночное время ограждение зоны должно быть освещено, для чего на нем устанавливаются красные лампочки, автоматически загорающиеся при подаче напряжения в линию прогрева.
7.10 Все металлические токоведущие части электрооборудования и арматуру следует надежно заземлить, присоединив к ним нулевой провод питающего кабеля. При использовании защитного контура заземления перед включением напряжения необходимо проверить сопротивление контура, которое должно быть не более 4 Ом.
Около трансформаторов, рубильников и распределительных щитков устанавливают настилы, покрытые резиновыми ковриками.
7.11 Проверку сопротивления изоляции проводов с помощью мегомметра производит персонал, квалификационная группа по технике безопасности которого не ниже III .
Концы проводов, которые могут оказаться под напряжением, необходимо изолировать или оградить.
Участок прогрева бетона должен постоянно находиться под надзором дежурного электрика.
подключать под напряжение провода с механическими повреждениями изоляции, а также ненадежно выполненными коммутационными соединениями;
проводить работы по прогреву в сырую погоду, во время оттепели, без ограждения зоны прогрева;
работать при обнаруженной неисправности электропроводки;
прокладывать провода непосредственно по грунту;
размещать легковоспламеняющиеся материалы вблизи установок для прогрева бетонов, доступ посторонних лиц в зону прогрева.
Частота измерений температуры бетона при прогреве
Выбор способа производства бетонных и железобетонных работ в зимних условиях следует производить с учетом рекомендаций, приведенных в Приложении П.
5.11.8. Способ термоса следует применять при обеспечении начальной температуры уложенного бетона в интервале от 5 до 10 °C и последующем сохранении средней температуры бетона в этом интервале в течение 5 - 7 сут.
5.11.9. Контактный обогрев уложенного бетона в термоактивной опалубке следует применять при бетонировании конструкций с модулем поверхности 6 и более.
После уплотнения открытые поверхности бетона и прилегающие участки щитов термоактивной опалубки должны быть защищены от потерь бетоном влаги и тепла.
5.11.10. При электродном прогреве бетона запрещается использовать в качестве электродов арматуру бетонируемой конструкции.
Электродный прогрев следует производить до приобретения бетоном не более 50% расчетной прочности. Если требуемая прочность бетона превышает эту величину, то дальнейшее выдерживание бетона следует обеспечивать методом термоса.
Для защиты бетона от высушивания при электродном прогреве и повышения однородности температурного поля в бетоне при минимальном расходе электроэнергии должна быть обеспечена надежная тепловлагоизоляция поверхности бетона.
5.11.11. Применение бетона с противоморозными добавками запрещается в конструкциях: железобетонных предварительно напряженных; железобетонных, расположенных в зоне действия блуждающих токов или находящихся ближе 100 м от источников постоянного тока высокого напряжения; железобетонных, предназначенных для эксплуатации в агрессивной среде; в частях конструкций, находящихся в зоне переменного уровня воды.
5.11.12. Вид и количество противоморозной добавки назначают в зависимости от температуры окружающей среды. Для конструкций средней массивности (с модулем поверхности от 3 до 6) за расчетную температуру принимают среднюю величину температуры наружного воздуха по прогнозу на первые 20 сут от момента укладки бетона. Для массивных конструкций (с модулем поверхности менее 3) за расчетную принимают также среднюю температуру наружного воздуха на первые 20 сут твердения с увеличением температуры на 5 °C.
Для конструкций с модулем поверхности более 6 за расчетную принимают минимальную среднесуточную температуру наружного воздуха по прогнозу на первые 20 сут твердения бетона.
5.11.13. При отрицательной температуре окружающей среды конструкции следует укрывать гидротеплоизоляцией или обогреть. Толщину теплоизоляции назначают с учетом температуры наружного воздуха. При обогреве бетона с противоморозной добавкой должна быть исключена возможность местного нагрева поверхностных слоев бетона выше 25 °C.
Для защиты от вымораживания влаги открытые поверхности свежеуложенного бетона вместе с примыкающими поверхностями опалубки должны быть надежно укрыты.
5.11.14. При омоноличивании конструкций с выдерживанием бетона с противоморозными добавками поверхностные слои бетона омоноличиваемых конструкций допускается не отогревать, но необходимо удалить наледь, снег и строительный мусор с поверхностей бетона, арматуры и закладных деталей.
5.11.15. Открытые поверхности уложенного бетона в стыках омоноличивания должны быть надежно защищены от вымораживания влаги. В случае появления трещин в стыках необходимо их расшивать только при устойчивой положительной температуре воздуха.
5.11.16. Требования к производству работ при отрицательных температурах воздуха приведены в таблице 5.7.
Уход за бетоном зимой по действующим сводам правил
Напомним, что зимние условия бетонирования наступают при среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С (согласно п.5.11.1).
5.11.7 Температурно-влажностное выдерживание бетона в зимних условиях производят:
- способом термоса;
- с применением противоморозных добавок;
- с электротермообработкой бетона;
- с обогревом бетона горячим воздухом, в тепляках.
Выдерживание бетона осуществляют по специально разработанным технологическим картам в ППР, в которых должны быть приведены:
- способ и температурно-влажностный режим выдерживания бетона;
- данные о материале опалубки с учетом требуемых теплоизоляционных показателей;
- данные о пароизоляционном и теплоизоляционном укрытии открытых поверхностей;
- схема размещения точек, в которых следует измерять температуру бетона и наименование приборов для их измерения;
- нормированные величины прочности бетона;
- сроки и порядок распалубки и загружения конструкций.
В случае применения электротермообработки бетона в технологических картах дополнительно указывают:
- схемы размещения и подключения электродов или электронагревателей;
- требуемую электрическую мощность, напряжение, силу тока;
- тип понижающего трансформатора, сечения и длину проводов.
Выбор способа производства бетонных и железобетонных работ в зимних условиях следует производить с учетом рекомендаций, приведенных в приложении П.
Таблицы данного приложения приведены ниже (необходимо отметить, что приложение П носит рекомендательный характер):
5.11.8 Способ термоса следует применять при обеспечении начальной температуры уложенного бетона в интервале от 5 до 10 °С и последующем сохранении средней температуры бетона в этом интервале в течение 5-7 сут.
5.11.9 Контактный обогрев уложенного бетона в термоактивной опалубке следует применять при бетонировании конструкций с модулем поверхности 6 и более.
После уплотнения открытые поверхности бетона и прилегающие участки щитов термоактивной опалубки должны быть защищены от потерь бетоном влаги и тепла.
5.11.10 При электродном прогреве бетона запрещается использовать в качестве электродов арматуру бетонируемой конструкции.
Электродный прогрев следует производить до приобретения бетоном не более 50% расчетной прочности. Если требуемая прочность бетона превышает эту величину, то дальнейшее выдерживание бетона следует обеспечивать методом термоса.
Для защиты бетона от высушивания при электродном прогреве и повышения однородности температурного поля в бетоне при минимальном расходе электроэнергии должна быть обеспечена надежная тепловлагоизоляция поверхности бетона.
Электродный прогрев конструкций из напрягающего бетона не допускается.
5.11.11 Применение бетона с противоморозными добавками запрещается в конструкциях: железобетонных предварительно напряженных; железобетонных, расположенных в зоне действия блуждающих токов или находящихся ближе 100 м от источников постоянного тока высокого напряжения; железобетонных, предназначенных для эксплуатации в агрессивной среде; в частях конструкций, находящихся в зоне переменного уровня воды.
5.11.12 Вид и количество противоморозной добавки назначают в зависимости от температуры окружающей среды. Для конструкций средней массивности (с модулем поверхности от 3 до 6) за расчетную температуру принимают среднюю величину температуры наружного воздуха по прогнозу на первые 20 сут от момента укладки бетона. Для массивных конструкций (с модулем поверхности менее 3) за расчетную принимают также среднюю температуру наружного воздуха на первые 20 сут твердения с увеличением температуры на 5 °С.
Для конструкций с модулем поверхности более 6 за расчетную принимают минимальную среднесуточную температуру наружного воздуха по прогнозу на первые 20 сут твердения бетона.
5.11.13 При отрицательной температуре окружающей среды конструкции следует укрывать гидротеплоизоляцией или обогреть. Толщину теплоизоляции назначают с учетом температуры наружного воздуха. При обогреве бетона с противоморозной добавкой должна быть исключена возможность местного нагрева поверхностных слоев бетона выше 25 °С.
Для защиты от вымораживания влаги открытые поверхности свежеуложенного бетона вместе с примыкающими поверхностями опалубки должны быть надежно укрыты.
5.11.14 При омоноличивании конструкций с выдерживанием бетона с противоморозными добавками поверхностные слои бетона омоноличиваемых конструкций допускается не отогревать, но необходимо удалить наледь, снег и строительный мусор с поверхностей бетона, арматуры и закладных деталей.
5.11.15 Открытые поверхности уложенного бетона в стыках омоноличивания должны быть надежно защищены от вымораживания влаги. В случае появления трещин в стыках необходимо их расшивать только при устойчивой положительной температуре воздуха.
Контроль качества бетонных работ в зимних условиях
Контролируют качество бетона при работах в зимних условиях с учетом следующих условий.
Не реже чем через каждые 2 ч измеряют температуру воды и заполнителей при загрузке в бетоносмеситель и температуру бетонной смеси при выходе из бетоносмесителя.
Температуру бетонной смеси при укладке в конструкцию измеряют систематически таким образом, чтобы исключить возможность подачи и укладки в конструкцию порций бетонной смеси с температурой ниже заданной.
Температуру уложенного бетона контролируют:
Температуру бетона измеряют через специальные скважины, оставляемые при бетонировании и плотно закрываемые пробками на пакле. Лучше всего для образования скважин закладывать в бетон металлические трубки с запаянным дном, в которые наливают немного минерального масла. Термометр опускают в масло. Термометр должен находиться в скважине не менее 3 мин.
Температуру бетона измеряют в местах наиболее неблагоприятного температурного режима: при термосном выдерживании — в скважинах глубиной 10 см, которые устраивают в слоях бетона, прилегающего к опалубке, и отстоящих от нее на расстоянии 5—10 см, а при искусственном обогреве — в глубинных скважинах. В конструкциях с Мп менее 3 предусматривают поверхностные и глубинные скважины.
Температуру наружного воздуха или окружающей среды измеряют не реже трех раз в сутки.
Прочность бетона определяют по контрольным образцам-кубам.
Каждая проба должна состоять из трех серий образцов, которые выдерживают в условиях, максимально близких к условиям твердения уложенного бетона, и испытывают в сроки, устанавливаемые в зависимости от условий производства работ.
При этом одну из серий испытывают в день, когда температура бетона в конструкции упадет до 1—2° С, а в конструкциях из бетона с противоморозными добавками — до расчетной температуры твердения, соответствующей концентрации солей, которые введены в бетонную смесь. Одна из серий является запасной и служит для получения дополнительных контрольных данных.
Если контрольные образцы не могут быть выдержаны при температурном режиме, аналогичном температурному режиму конструкций, то их хранят в нормальных условиях, но лаборатория должна внести соответствующие поправки в результаты испытаний.
Кроме определения качества бетона путем испытания контрольных образцов, необходимо при положительной температуре наружного воздуха оценить качество бетона путем его осмотра и испытания прочности в конструкции.
Данные о методах и сроках выдерживания бетона и образцов, о температурах бетона и данные по тепловому режиму выдерживания бетона заносят в журнал контроля температур. Результаты наблюдений за температурой подогрева воды и заполнителей, температурой бетонной смеси и результаты проверки прочности образцов заносят в журнал бетонных работ.
Прогрев бетона в зимнее время: технологическая карта, способы.
Бетон – это очень популярный на сегодняшний день строительный материал, для изготовления которого применяют такие компоненты, как цемент, вода, заполнитель и вода. Но одно дело, когда вы производите заливку бетона летом, ведь теплое время года благоприятно влияет на процесс набора прочности. Что же происходит зимой? При сильных морозах набор прочностных характеристик прекращается, а это крайне нежелательно. В этом случае необходимо применять ряд мероприятия, которые позволят прогревать бетон. Для этого нужно знать все особенности технологической карты бетона на зимний период и актуальные способы прогрева.
Технологическая карта и способы прогрева бетона
Прогревать сварочным аппаратом
Этот метод прогрева предполагает применение следующих материалов:
- кусков арматуры;
- лампы накаливания и градусника для измерения температуры.
Процесс установки кусков арматуры выполняется параллельно цепи, с примыкающими и прямыми проводами, между которыми монтируется лампа наливания. Именно благодаря ей будет возможным производить измерения напряжения.
Чтобы померить температуры, стоит задействовать градусник. По времени этот процесс занимает много времени, примерно 2 месяца. При этом на весь процесс прогревания необходимо оградить конструкцию от влияния холода и воды. Применять обогрев сварочным аппаратом целесообразно при малом объеме бетона и отличных условиях погоды.
Инфракрасный метод
Смысл этого метода состоит в том, что ведется установка оснащения, работа которого выполняется в инфракрасном диапазоне. В результате этого удается преобразовать излучение в тепло. Именно тепловая энергия внедряется в материал.
Инфракрасный подогрев бетонной смеси представляет собой электромагнитные колебания, у которых скорость распространения волны будет составлять 2,98*108 м/с и длина волны 0,76-1, 000 мкм. Очень часто в роли генератора задействуют трубки, выполненные из кварца и металла.
Главной особенностью представленной технологии является возможность питания энергией от обычного переменного тока. При инфракрасном обогреве бетона параметр мощности может меняться. Она зависит от необходимого температурного режима нагревания.
Благодаря лучам энергия может проникать в более глубокие слои. Для достижения необходимой эффективности процесс обогрева должен выполняться плавно и постепенно. Здесь запрещено работать при высоких показателях мощности, иначе верхний слой будет иметь высокую температуру, что в конечном результате приведет к потере прочности. Применять такой метод необходимо в случаи, когда нужно разогреть тонкие слои конструкции, а также подготовить раствор для ускорения времени сцепки.
Какие существуют плюсы и минусы дома из газобетона, указано в данной статье.
Индукционный метод
Для осуществления этого метода необходимо задействовать энергию переменного тока, которая будет преобразовываться в тепловую в опалубке или арматуре, выполненной из стали.
После преобразованная тепловая энергия будет распространяться на материал. Применять индукционный метод обогрева целесообразно при обогреве железобетонных каркасных конструкций. Это могут быть ригели, балки, колонны.
Если использовать индукционный прогрев бетона по внешним поверхностям опалубки, то здесь необходимо выполнить монтаж последовательных витков, которые изолированы от индукторов и проводом, а число и шаг определяется расчетным путем. С учетом полученных результатов удается изготовить шаблоны с пазами.
Когда индуктор был установлен, то можно выполнять обогрев арматурного каркаса или стыка. Делается это для того, что удалить наледь до того, как будет происходить бетонирование. Теперь открытые поверхности опалубки и конструкции можно укрыть при помощи теплоизоляционного материала. Только после обустройства скважин можно приступать к непосредственной работе.
Когда смесь примет необходимый температурный режим, то процедуру обогрева прекращают. Следите, чтобы опытные показатели отличались от расчетных не менее чем на 5 градусов. Скорость остывания может сохранить свои пределы 5-15 С/ч.
Применение трансформаторов
Для повышения температурного режима в бетоне можно воспользоваться таким недорогим и простым методом, как нагревательный провод ПНСВ.
Конструкция этого кабеля предусматривает два элемента:
- однопроволочная жила круглой формы, выполненная из стали;
- изоляция, для которой можно задействовать ПВХ пластик или полиэтилен.
Если вам необходимо обогреть смесь 40-80 м3, то для этого будет достаточно установить всего лишь одну трансформаторную подстанцию. Применяют такой метод в том случае, когда на улице температура воздуха достигла отметки -30 градусов. Использовать трансформаторы целесообразно для обогрева монолитных конструкций. Для 1 м веса будет достаточно провода в 60 м.
Какие производители автоклавного газобетона существуют, указано в данной статье.
Выполняется такая манипуляция по следующей инструкции:
- Внутрь бетона укладывают нагревательный провод. Его подсоединяют к станции или выводам трансформатора.
- При помощи электрического тока массив начинает набирать температуру, в результате чего ему удается затвердеть.
- так как материал обладает отличными свойствами проводимости тепловой энергии, тепло с высокой скоростью начинает двигаться по всему массиву.
Таблица 1 – Характеристика проводов марки ПНСВ
1 Напряжение переменного тока, В 3802 Длина секции кабеля на напряжение 220 В:– ПНСВ 1,0 мм, м 80– ПНС В 1,2 мм, м 110– ПНС В 1,4 мм, м 1403 Удельная мощность тепловыделения кабеля:– для армированных установок, Вт/п.м.30-35– для неармированных установок, Вт/п.м.35-404Напряжение питания рекомендуемое, В55-1005Среднее значение сопротивления жилы:– ПНС В1,2 мм, Ом/м0,15– ПНС В 1,4 мм, Ом/м0,106 Параметры метода:– Мощность удельная, кВт/м31,5-2,5– Расход провода, п.м./м350-60– Цикл термосного выдерживания конструкций, суток2-3
Провод для обогрева, который уложен внутрь бетона, должен обогревать конструкцию до 80 градусов. Электропрогрев происходить при помощи трансформаторных подстанций КПТ ТО-80. Для такой установки характерно наличие нескольких ступеней низкого напряжения. Благодаря этому становится возможным выполнять регулировку мощности нагревательных кабелей, а также подгонят ее согласно измененной температуре воздуха.
Использование кабеля
Использование такого варианта прогрева не требует больших затрат электроэнергии и дополнительного оснащения.
Читайте также: