Схемы из электро конструктора
Предлагаю всем счастливым обладателям конструктора ЗНАТОК выкладывать здесь свои новые проекты, которых нет в инструкциях, а также самостоятельно изготовленные новые детали для этих замечательных конструкторов!
Трёхфазный мультивибратор. То же в двух вариантах. На прямых и обратных транзисторах. Помнится в пионерском детстве паял такие бегунки на ёлку. Был и высоковольтный вариант на тиристорах КУ202Н ))
Реверсирование электромотора на реле (тоже новые детальки). Левое и правое реле отличаются подключением контактов - оно специально сделано зеркальным для удобства подключения мотора.
Реверсирование электромотора на транзисторах (Н-мост). Транзисторы стандартные на 0,5 Ампера, поэтому моторчик маломощный - из набора "Альтернативная энергия". Для мощного "пропеллерозапускающего" мотора с пусковым током до 2А нужны более мощные транзисторы. Ампера на 3. Схема позволяет, убрав кнопки, управлять мотором подачей слаботочного сигнала амплитудой 5. 6В (в т.ч. с использованием ШИМ для управления частотой вращения вала мотора), например от микроконтроллера или логических схем, о которых далее.
Электромагнитный контактор (он же "пускатель", он же "реле с самоподхватом").
Новые детальки: размыкающая кнопка, реле.
Вопрос на сообразительность. Для чего нужен диод?
Малый микроконтроллер.
Ну вы, конечно, уже догадались, что от звуковой микросхемы тут только пластиковый 5-контактный корпус. ;) И что в этом корпусе прячется маленький Arduino-совместимый микроконтроллер (МК). В отличие от полноразмерных Ардуинок, маленький МК в 5-контактом корпусе, значительно экономит место на плате, что порой бывает критично. 3 цифровых входа/выхода, аналоговых входа. 16Mhz, 6 кБ свободной памяти, питание 6-20 вольт. Программируется через встроенный разъём micro-USB или прямо через контакты на корпусе, для чего нужен простенький USB-шнурок.
RGB-светодиод обыкновенный!
С общим катодом. Внутри 3 токоограничивающих резистора - по 1 на каждый кристалл.
Оптический канал передачи сигнала! Передаём звук на расстояние 1 метр и более. Слева передающая схема, справа принимающая. Видео смотрите со звуком.
Свето-музыкальный инструмент.
Представляет собой полифонический электроорган. (можно играть аккордами или с аккомпанементом в левой руке). Звуковой сигнал передаётся лучом света на другую плату, где и воспроизводится динамиком. В микроконтроллеры (МК) прошита программа, воспроизводящая звуки, в каждом МК она одна и та же программа, только на свою ноту. На каждом из трёх контактов МК постоянно "звучит" нота. Нажатием кнопок-клавишей выходы МК подключаются к сумматору, образованному резисторами и цепью передающего светодиода. Индуктивность нужна для смягчения звука, особенно в аккордах. Дополнительно смягчает звук конденсатор на инверсном входе микросхемы усилителя. Без такого "двойного ВЧ-фильтра", из-за биения частот и периодического совпадения фронтов сигнала в аккордах будут слышны неприятные на слух обертоны. У этого экземпляра 15 клавишей, но можно легко нарастить практически до любого их количества.
Новые детали:
- микроконтроллеры в 5-контактных корпусах;
- горизонтальный фоторезистор (с угловым держателем).
Импульсное реле.
Одно из любимых современными электриками устройств управления освещением из разных точек помещения. В отличие от проходного выключателя, для включения/выключения нагрузки используются кнопки (Кв1, Кв2 … КвN), которых можно установить сколько угодно много в разных точках помещения, соединив их параллельно. Также предусмотрена кнопка гарантированного отключения всех потребителей (Ко), которую можно установить, например, возле двери выхода из здания. ИР выпускается серийно в стандартных корпусах для установки на DIN-рейку. Существуют электронные и электро-механические ИР, обладающие своими достоинствами и недостатками. В нашем случае это электронное ИР. Для экономии электроэнергии вместо лампы накаливания применён яркий белый светодиод.
Новые детали:
- уже знакомый вам микроконтроллер в 5-контактном корпусе;
- электромагнитное реле с 1 переключающим контактом.
Итак, элемент «НЕ» (NOT)
Логический элемент «Исключающее ИЛИ (XOR)»
отличается от "ИЛИ" тем что если на обоих входах 1 то на выходе будет 0
т.е. на выходе логическая единица только если сигналы на входах различны
Предлагаю еще один обзор о увлекательной игрушке для детей. Как вы уже поняли из названия обзора, речь пойдет о электронном конструкторе. Что же это такое и с чем его едят?
В поисках игрушки, которой можно было бы порадовать и удивить ребенка, наткнулась на данный конструктор.
Электронный конструктор “Знаток” представляет собой набор электронных блоков и соединений, позволяющий конструировать электрические цепи без пайки.
Сначала очень возрадовалась, увидев, что производителем значилась Россия, но покопавшись еще, выяснила, что производитель все-таки Китай.
Китайцы в очередной раз удивили находчивостью — соединение происходит обычными одежными кнопками!
Идея мне понравилась и конструктор был приобретен.
Решила взять средний по количеству схем.
Игрушка рекомендуется для детей от 5 и до 99 лет.
Все детали вложены в пластиковую подставку.
Подробнейшая инструкция в деталях рассказывает, как собрать ту или иную схему – ребенку будет интересно узнать, насколько просто и интересно устроены вещи, которыми все мы пользуемся в быту.
Сознательно прячу их под спойлер, так как это не особо важная информация.
Любая схема собирается вот на такой подставке размером 28х22 см.
Детали защелкиваются по принципу одежных клёпок.
Это импровизированные провода.
Конструктор содержит 53 детали, казалось, не так уж и много, но простор для фантазии огромный.
2 батарейных отсека с крышками, батарейки в комплекте не идут.
Детали конструктора
Ну-с-с, приступим. Попробуем чего-нибудь сконструировать. Возьмем для начала простенькую схему лампы, управляемой магнитом.
Отбираем необходимые детали.
Путем легкого нажатия пристегиваем их к основанию.
Готово!
Лампочка загорелась (плохо видно, подсели батарейки).
Попробуем собрать теперь тестер электропроводности.
Здесь все просто.
Проводим эксперимент — прикладываем деревянный предмет и проверяем, является ли он проводником.
Вывод — нет, дерево не проводник.
А теперь проведем тот же эксперимент, только используем на этот раз металлическую ложку.
Лампочка загорелась, значит металл является проводником. Такая игра позволит ответить на вопросы вашего маленького почемучки.
Теперь построим летающий пропеллер. Это у нас любимая схема.
Готовим детали.
Собираем.
Нажимаем кнопку.
Пропеллер начинает вращаться, постепенно разгоняясь.
Пропеллер с пола взлетает до потолка, севшие батарейки помешали насладиться зрелищем вполне.
Теперь соорудим музыкальный дверной звонок, управляемый различными способами.
Готовим детали.
Собираем.
Включаем и слушаем мелодию.
Можно заменить динамик светодиодом.
Или фотоэлементом, тогда музыка будет играть при попадания света на фотоэлемент (по такому принципу собираются датчики рассвета и заката из инструкции).
Теперь соберем схему управления звуками звездных войн
Детали.
Например, управляем магнитом — при поднесении магнита к чувствительной детали из динамика слышатся звуки звездных войн.
И последняя из представленных схем — светодиод, управляемый звуком.
Светодиод загорается от хлопков в ладоши или громкого звука.
По такому же принципу можно сделать звуковую сигнализацию, заменив светодиод динамиком.
Схем еще очень много, можно собрать настоящее радио и детектор лжи, но более не смею вас утомлять.
Спасибо за внимание!
Вывод
С помощью конструктора вам не смоставит труда объяснить ребенку школьного и даже дошкольного возраста как устроено радио, как зажигается лампочки и ответить на трудные вопросы из области электроники.
Группа об электронных конструкторах ЗНАТОК и других развивающих игрушках, выпускаемых компанией ЗНАТОК ПЛЮС.
Здесь Вы найдёте всю актуальную информацию об электронных конструкторах ЗНАТОК. Мы с радостью ответим на все вопросы!
Станислав Сергеич запись закреплена
Станислав Сергеич запись закреплена
Электронный конструктор ЗНАТОК | детали, схемы запись закреплена
В рамках фестиваля «Роботы для людей» состоится первый розыгрыш «Кубка ЗНАТОКа» по направлению «ЗНАТОК ВОЖДЕНИЯ».
Фестиваль будет проходить в течение 3 дней:
Показать полностью.
22 апреля, пятница
После 13:00 вы можете поучаствовать в свободных заездах, познакомиться с оборудованием и полигоном
23 апреля, суббота
С 11:00 начинается розыгрыш Кубка ЗНАТОКа. Участвуют команды-представители школ, кружков робототехники или простые дружеские и семейные команды.
Соревнования проходят по системе плей-офф (на вылет). Команды могут приходить со своими наборами «Лидер 4х4», или получить их на месте.
Продолжительность: 3-6 часов.
Все команды, принявшие участия в Кубке, получат Дипломы и Подарки. Участники награждаются в конце соревнований.
Мы не берём регистрационных сборов за участие в Кубке. Участие бесплатное.
24 апреля, воскресенье
На нашей площадке пройдут мастер-классы по продукции ЗНАТОК и свободные тестовые заезды.
Можно будет ознакомиться с другими этапами соревнования: «ЗНАТОК ПРАВИЛ ДОРОЖНОГО ДВИЖЕНИЯ» (6+) и «ЗНАТОК ПРОГРАММИРОВАНИЯ» (12-15 лет), включающий в себя программирование на профессиональных языках C++ и Python.
Даты фестиваля: 22-24 апреля 2022 года
Адрес: Московская область, г. Королев, ул. Молодёжная, дом 7, Межрегиональный центр компетенций – Техникум имени С.П. Королева.
Станислав Сергеич запись закреплена
У меня есть наборы «Для школы и дома» и Умная машина
Подскажите, пожалуйста, как из этих двух наборов собрать две двусторонние рации уоки-токи?
Одна рация это пульт от машины. Вторая рация это аккумулятор и модуль 93. Динамик к этому модулю я подключил, звук от микрофона пульта он ловит. А вот как подключить микрофон и переключаться в режим передачи?
Владислав, Насколько я помню, в супер наборе была такая схема. Можете поискать в обсуждении "Руководства"
Станислав Сергеич запись закреплена
Станислав Сергеич запись закреплена
Елена Юпко запись закреплена
Здравствуйте. Ещё вопрос. Модуль связи. На динамик выдаётся едва слышный сигнал. Поменяли динамик. Ничего не изменилось. Тоже конец?
Елена Юпко запись закреплена
Здравствуйте. Похоже накрылся блок. Что может в нем сломаться? Провода все на месте, но явно глючит. Блок с разрядами живет своей жизнью, при сборке некоторых схем не могу переключиться на программы. Нажатие на кнопку впустую, не переключается.
Станислав Сергеич запись закреплена
Константин Фомин
запись закреплена
Всем привет. У меня такая проблема. Улетела насадка от моторчика. Где можно будет её купить или заказать?
Константин Фомин
Электронный конструктор ЗНАТОК | детали, схемы запись закреплена
ЗНАТОК™ | Развивающие игрушки для детей
Когда появилось первое колесо?
Кто сделал первую машину?
Что такое радиосвязь?
Как превратить машину в радиоуправляемую
Показать полностью.
Приходите на мастер-класс "Успей к Финишу" в фирменный магазин ЗНАТОК в ЦДМ на Лубянке и узнаете ответы на все эти вопросы!
Мы посоревнуемся в том, кто быстрее всех соберет радиоуправляемую машину и доедет до финиша!
Устроим настоящие гонки на "Умной машине" ЗНАТОК
А финалисты смогут побороться за ценные призы!
Ждем вас 15-16 мая в 13:00 и 17:00!
Электронный конструктор ЗНАТОК | детали, схемы запись закреплена
ЗНАТОК™ | Развивающие игрушки для детей
ФИКСИКИ И ЗНАТОК РАЗДАЮТ ПОДАРКИ
Друзья, скоро в продаже появятся наши новые электронные конструкторы ЗНАТОК с Фиксиками! Мы решили отметить это грандиозное событие с размахом в ЦДМ уже на следующих выходных!
Вас и ваших детей ждет множество развлечений и призов! И все это абсолютно бесплатно!
Показать полностью.
⠀
Что в программе:
11.00 – 13.45 – интереснейший ФИКСИКВЕСТ с гарантированными призами.
Место встречи: 1-3 этаж ЦДМ
Вы станете частью команды конструкторов и пройдете интересный квест с Фиксиками! Всего мы приготовили для ребят 7 испытаний!
14.00 – 14.45 – ФИКСИШОУ
Место встречи: Атриум ЦДМ
Покажем грандиозное шоу в Атриуме ЦДМ! Профессор Чудаков на ваших глазах увеличит Симку и Нолика с помощью гениального изобретения!
14.45 – 15.00 – розыгрыш Супер-приза, 7 новых наборов электронного конструктора.
Место встречи: Атриум ЦДМ
Один из счастливчиков получит все 7 новых конструкторов бесплатно!
15.00 – 18.00 – продолжение ФИКСИКВЕСТА с гарантированными призами.
Не забдуьте получить флаер на входе в ЦДМ! С его помощью можно получить наш ФИКСИКОНСТРУКТОР со скидкой -30%. Получить любой набор с Фиксиками по такой большой скидке можно будет только в этот день!
Сохраните эту дату в своем календаре! Увидимся в следующую субботу, 19 сентября!
Электронный конструктор ЗНАТОК | детали, схемы запись закреплена
ДАРИМ 4 КОНСТРУКТОРА ЗНАТОК 180 СХЕМ
⠀
Уже завтра! В субботу и воскресенье, 18 и 19 июля, мы проверим, кто быстрее всех соберет радио из конструктора Знаток и установит новый рекорд по сборке этой схемы!
⠀
Победитель получит набор 180 схем!
Показать полностью.
Электронный конструктор ЗНАТОК | детали, схемы запись закреплена
ЗНАТОК™ | Развивающие игрушки для детей
Сегодня мы подготовили небольшую подборку электронных конструкторов, с помощью которых ребенок сможет сделать собственные первые эксперименты и совершить первые шаги в программировании.
Опыты с электроникой в последнее время стали довольно популярны: даже в розничных магазинах можно встретить большое количество однотипных, локализованных разными поставщиками, подарочные коробки, внутри которых инструкции для коротких проектов.
Один из самых простых примеров — это «Картофельные часы», "Природное электричество" и т. п.
Последний — это не совсем электронный конструктор, хотя и грань между ними довольно тонкая: набор простых компонентов — есть; схема для сборки, или активации простых элементов — есть; провода, инструкция… В общем, пытаются соответствовать.
Честно говоря, при довольно-таки богатой коробке — весьма незамысловатое наполнение. В комплекте несколько медных и цинковых пластин, провода, крышки, для которых придется самостоятельно искать бутылки, диод на подставке и очень просто сделанные цифровые часы.
Чем может привлечь? Для того, чтобы активировать что-либо, необходимо приложить какие-то усилия сверх набора: найти соленую воду, цветок в горшке или пару яблок. В этом смысле маленькому ребенку может быть любопытно и полезно узнать, что некоторые вещи, которые нас окружают немного необычны.
Надолго такой игрушки не хватит, но часы, подключенные к маминому фикусу вполне могут простоять какое-то время и даже показывать его же, если не забывать вовремя поливать. Стоимость 790 рублей.
Похожим на этот набор можно назвать "Мастерскую электричества", о которой мы не так давно писали. Набор также кому-то кажется слегка переоцененным, но у него есть ряд достоинств.
Две цветные инструкции: текстовая и визуальная, несложная платка с удобным пружинным креплением проводов, что не требует от ребенка сверхчетких действий. И, также как и в описанном выше наборе, некоторое пространство для творчества вместе с соленой водой и т. п. Всего же «Мастерская» электричества предлагает свыше 20 экспериментов.
В наборе моторчик, динамик и несколько лампочек. При, опять же, некоторой «бедности» комплектации сама коробка оформлена весьма приятно и тянет на хороший сувенир ребенку на время школьных каникул.
Микроник — пожалуй, наш самый любимый образец.
Это проект «Амперки» хорошо знакомого вам производителя наборов для программирования на базе Arduino.
Микроник же стоит особняком: ничего программировать тут не надо. Это начальный набор для первых опытов.
В наборе свыше сотни компонентов, которые последовательно должны занять свое место на маленькой плате.
Плата действительно миниатюрная, за что данный конструктор некоторые критикуют, мол, ребенку трудновато работать на таком пространстве. Тут есть и рацзерно. Но одна из задач, вероятно, и была «конструктор для маленьких» сделать маленьким.
Некоторые эксперименты, а также комплектацию «Микроника» мы уже описывали в одном из давних обзоров аж за 2015 год.
Сильно фантазировать тут не получится: все двадцать моделей, которые предусмотрены, собираются из предложенных в наборе компонентов, то есть без соленой воды, фруктов и пластиковых бутылок можно обойтись.
Простейшие эксперименты собираются довольно легко, так как отсчитать нужное количество клеточек для подключения в относительной пустоте не очень сложно.
Иные же модели потребует большего усердия и внимательности.
Из относительно недорогих проектов «Амперки» также хотелось бы упомянуть "Технокуб". Он любопытен тем, что поможет создать ребенку первое смарт-устройство самостоятельно.
Работает он на базе платформы Iskra Neo с микроконтроллером ATmega32U4, что, как уточняют авторы, аналог Arduino Leonardo.
Всего в наборе не так много компонентов, из которых предлагается собрать куб с диодной нотификацией о разных событиях.
С учетом того, что многие подобные вещи нас окружают, начиная от умных браслетов, которые оповещают о звонках, до датчиков движения, смарт-камер с многочисленными пушами, такое занятие кажется очень своевременным.
Вернемся к обычным конструкторам. Из аналогов «Микроника» следует упомянуть конструкторы "Знаток". Главное их отличие — большая наглядность, упрощенный и более надежный способ закрепления элементов.
Безусловно, некоторая атмосфера «серьезного» взрослого конструктора теряется, но для постижения простых законов физики и электроники, возможно, она и не нужна. Элементы конструктора крепятся к плате с помощью «кнопок».
Все выполнено из жестких элементов, и значит конструкция не развалится, не рассыпется: это довольно надежно и прагматично. Сама же «плата» в разы больше и «Мастерской электричества», и уже «Микроника» подавно.
Что-то не доделал? Легко убрать с доской и отложить до следующего раза.
Раз уж мы коснулись темы электронных робототехнических конструкторов, то уместно упомянуть пару примеров. Во-первых, электронные конструкторы «ЛАРТ».
Компания известна на рынке аналогичными наборами электронных экспериментов, типа «Природного электричества» и несколькими моделями программируемых простых моделей. Среди них, например: «Робот-скиф», который управляется блоком R-5 с контроллером Arduino nano.
В комплекте вы получаете:
- Несущая пластина – 1 шт.
- Мотор-редуктор – 4 шт.
- Колесо пластиковое – 4 шт.
- Батарейный отсек на 6 шт. батареек АА – 1 шт.
- Блок управления R-5 – 1 шт.
- Контроллер совместимый с Arduino Nano – 1 шт.
- Инфракрасный датчик ЛМ1-940 – 2 шт.
- Ультразувковой датчик HC-SR04 – 1 шт.
- Сервомотор SG90 – 1 шт.
- Пластиковый держатель УЗ датчика – 1 шт.
- USB кабель – 1 шт.
- Стойка латунная 10 мм – 2 шт.
- Стойка латунная 20 мм – 4 шт.
- Винт М3 х 25 мм – 8 шт.
- Винт М3 х 6 мм – 14 шт.
- Винт М2 х 6 мм — 2 шт.
- Гайка М3 — 2 шт.
- Гайка М2 — 2 шт.
- Комплект проводов – 1 шт.
- Трубка пластиковая для ИК диодов — 2 шт.
- CD диск с описанием конструктора — 1 шт.
Чуть более простой и чуть более дешевый «ЛАРТ» — «Робот, следующий по линии».
- Несущая пластина.
- Ходовая часть: 2 электромотора с колесом 42 мм, держателем моторов и крепежных винтов с гайками М2. И шариковая опора
- Батарейный отсек с 6-ю батарейками типа АА и крепежными винтами с гайками М3.
- Блок управления R5 с контроллером Arduino Nano, металлическими стойками 25 мм и крепежными винтами М3 х 6мм.
- Набор пластиковых деталей робота.
- Крепежные элементы
- Батарейный отсек для 6-ти батареек АА
- Батарейный отсек для 4-х батареек АА
- 4 сервомотора SG90
- Блок управления R-5M
- Контроллер Arduino Nano
- Резиновые ножки
Всего есть несколько наборов. Например, «Стартовый набор» первого уровня призван объяснить основы электроники.
Он построен по принципу обучающих уроков: всего их 30, каждый из которых последовательно включает и теоретическую часть и практические навыки.
Урок №1. Основные понятия электричества.
Напряжение, сопротивление, мощность, сила тока, закон Ома.
Урок №2. Светодиод.
Особенности применения и подключения
Урок №3. Тактовая кнопка.
Использование в электрической цепи
Урок №4. Работа с мультиметром.
Методика измерения электрических характеристик
Урок №5. Переменное сопротивление.
Реостат и потенциометр, их назначение и применение.
Урок №6. Транзисторы.
Описание и разновидности. Построение цепи на основе биполярного транзистора
Урок №7. Последовательное соединение проводников.
Характеристики и особенности. Расчет электрической цепи.
Урок №8. Терморезистор и фоторезистор.
Описание и особенности использования.
Урок №9. Делитель напряжения.
Принцип деления напряжения. Расчет параметров цепи.
Урок №10. Вольт-амперная характеристика.
Определение и функциональное предназначение.
Урок №11. RGB-светодиод.
Особенности подключения полноцветного светодиода.
Урок №12. Параллельное соединение проводников.
Характеристики и особенности. Расчет электрической цепи.
Урок №13. Конденсатор.
Разновидности, характеристики и применение.
Урок №14. Однопереходный транзистор.
Принцип работы и практическое использование в схемах.
Урок №15. Создание простого колебательного контура.
Мигающий светодиод.
Урок №16. Начало работы с микросхемами.
Микросхема счетчика импульсов в мини-проекте «Бегущий огонёк».
Урок №17. Применение микросхемы триггера Шмитта в цифровых системах.
Мини-проект «Автоматический бегущий огонёк».
Урок №18. Особенности работы с 7-сегментным цифровым индикатором.
Мини-проект «Змейка».
Урок №19. Знакомство с логическими элементами.
Микросхема с элементом «НЕ» в мини-проекте «Автоматический ночной светильник»
Урок №20. Микросхема с логическим элементом «И».
Понятие обратной связи и мини-проект «Код доступа».
Урок №21. Триггеры в электронике.
Микросхема D-триггера в мини-проекте «Пластификатор цифр».
Урок №22. Изучение 555-го таймера.
Моностабильный режим работы. Мини-проект «Таймер для домофона».
Урок №23. Работа 555-го таймера в режиме генератора непрерывных колебаний.
Мини-проект «Полицейский маяк».
Урок №24. Принципы создания звука. Звуковой динамик.
Мини-проект «Музыкальный синтезатор».
Урок №25. Расширенное управление таймером.
Мини-проект «Спецсигналы».
Урок №26. Применение драйвера 7-сегментного индикатора.
Мини-проект «Секундомер».
Урок №27. Разновидности электродвигателей.
Коллекторный двигатель и управление им с помощью реле.
Мини-проект «Привод автомобильного стеклоочистителя».
Урок №28. Управление электродвителем с применением Н-моста.
Мини-проект «Лебедка».
Урок №29. Микросхема-драйвер для управления электродвигателем.
Мини-проект «Повелитель мотора».
Урок №30. Управление сервоприводом.
Мини-проект «Сервометроном».
В основе каждого урока один или несколько экспериментов для улучшения восприятия и закрепления знаний. Все, как в школе, в общем. В процессе этой «занимательной физики» ребенку объяснят принципы создания колебательных систем, формирования цифровых сигналов, научат создавать собственные устройства из предложенных микросхем и элементов.
Учебное пособие по основам электроники
Часть 1 — 1 шт.
Часть 2 — 1 шт.
Набор светодиодов:
Красный — 5 шт.
Желтый — 5 шт.
Зеленый — 5 шт.
Набор резисторов:
120 Ом — 20 шт.
240 Ом — 20 шт.
1 кОм — 20 шт.
10 кОм — 20 шт.
100 кОм — 20 шт.
Набор тактовых кнопок с колпачками:
Тактовый кнопки — 3 шт.
Цветные колпачки — 3 шт.
Биполярный транзистор — 5 шт.
Переменный резистор (потенциометр) — 2 шт.
Фоторезистор VT93N1 — 1 шт.
Набор перемычек для макетной платы — 1 шт.
Болтовой клеммник — 3 шт
Макетная плата
82х53 — 2 шт.
Соединительные провода
«папа-папа» длиной 20 см — 40 шт
Батарейный отсек на 4 батарейки АА — 1 шт.
Мультиметр цифровой — 1 шт.
Набор электролитических конденсаторов:
1 мкФ — 5 шт.
47 мкФ — 5 шт.
4,7 мкФ — 5 шт.
100 мкФ — 5 шт.
220 мкФ — 5 шт.
Термистор 10 кОм — 1 шт.
RGB светодиод — 1 шт.
Однопереходный транзистор — 5 шт
Батарейки АА — 8 шт.
Серводвигатель — 1 шт.
Бузер — 1 шт.
Соединительные провода
«папа-мама» длиной 20 см — 20 шт
Мотор-редуктор — 1 шт.
Диод выпрямительный — 5 шт
Отвертка — 1 шт.
Набор микросхем (18 шт):
74hc4017 — 1 шт.
74hc14 — 1 шт.
74hc08 — 2 шт.
74hc04 — 2 шт.
74hc02 — 2 шт.
CD4026 — 2 шт.
L293D — 1 шт.
NE555 — 3 шт.
CD4013 — 4 шт.
7-сегментны индикатор — 2 шт.
Набор керамических конденсаторов:
0,1 мкФ — 5 шт.
0,01 мкФ — 5 шт.
Светодиод синий — 5 шт.
Реле одиночное — 1 шт
Динамик — 1 шт.
Батарейный отсек 1хАА — 1 шт
Батарейный отсек 2хАА — 1 шт.
Стабилизатор напряжения — 2 шт
Датчик наклона — 1 шт.
Модуль с тактовыми кнопками — 2 шт.
DVD диск — 1 шт.
Стоимость такого комплекта — 6999 рублей.
Также в линейке есть похожий конструктор, который отчасти решает аналогичные задачи, с более богатой комплектацией на базе контроллера Arduino.
У меня есть очень любопытный радиоконструктор. Он был выпущен в 1977 году и стоил в ту пору 10 рублей. Из этого конструктора можно собрать 35 конструкций, причём, без пайки. В качестве элемента питания используется батарейка типа «Крона».
Конструктор c неизменным успехом был испытан на детях поколений X, Y и Z. В причине этого успеха мы попробуем разобраться дальше.
Аппаратная часть
В основе конструкции лежит кассета, куда устанавливаются в определённом порядке «электронные кубики» – модули с четырьмя контактами по сторонам.
В корпусе кассеты находится конденсатор переменной ёмкости, переменный резистор в качестве регулятора громкости и батарейный отсек с подключенным к нему параллельно электролитическим конденсатором. Сразу скажу, что все электролитические конденсаторы в конструкторе я заменил на новые, а регулятор громкости – на менее изношенный.
Модули содержат перемычки или радиодетали: транзисторы, диоды, резисторы, конденсаторы. Есть модуль с ферритовой магнитной антенной, есть модуль с головным телефоном (наушником), и есть модуль с примитивным телеграфным ключом.
Ниже показан вид сверху и вид снизу модулей с транзисторами, диодами, резисторами и конденсаторами.
Транзисторы используются германиевые p-n-p. Тип транзисторов ГТ309. Диоды тоже германиевые — Д9. Резисторы используются МЛТ-0,25. Конденсаторы — К10-7.
Методика
В плане методики конструктор просто идеален. Сначала даётся монтажная схема устройства. Затем идёт описание назначения устройства, и только затем схема электрическая принципиальная.
Подача материала — классическая. Сначала даются схемы усилителей звуковой частоты (ЗЧ). Затем даются схемы радиоприёмников. И только потом — схемы генераторов. Причём даются не только схемы генераторов ЗЧ, но и схемы генераторов радиочастоты (РЧ)
Порог вхождения – минимальный. Собрал устройство по монтажной схеме, оно заработало. Не заработало, проверил правильность сборки. Опять не заработало, заменил батарейку.
Уже потом, если это интересно, можно попробовать разобраться в схеме. Правда, схемы нарисованы немного не по канонам журнала «Радио», но они несложные, на десяток компонентов.
Конструкции усилителей
В качестве первой конструкции усилителя даётся «классическая» схема каскада на одном транзисторе, включенном по схеме с общим эмиттером (ОЭ). Затем идёт схема каскада ОЭ на составном транзисторе (схема Дарлингтона), указывается, что усиление такого каскада выше.
Потом даётся пример усилителя с эмиттерным повторителем (схема ОК). В описании говорится, что у схемы ОК высокое входное сопротивление и коэффициент усиления меньше единицы. Соответственно, схема усилителя с высоким входным сопротивлением даётся двухкаскадной: в качестве первого каскада используется эмиттерный повторитель, а в качестве второго каскада используется схема ОЭ.
Каскад усилителя по схеме с общей базой (ОБ) рассматривается на примере усилителя с низким входным сопротивлением. Интересной особенностью схемы является то, что смещение на базе транзистора задаётся падением напряжения на двух последовательно включенных германиевых диодах.
Среди схем усилителей в описании радиоконструктора моим фаворитом, несомненно, является конструкция усилителя ЗЧ со стабилизацией:
Усилитель двухкаскадный с непосредственной связью между каскадами. За счёт отрицательной обратной связи (ООС) обеспечивается стабилизация режима работы усилителя.
До появления недорогих и качественных операционных усилителей подобные схемы успешно применялись в приёмниках прямого преобразования, т.к. имели коэффициент усиления от 1000 до 3000. Схемы усилителей с непосредственной связью и ООС на трёх транзисторах уже имели коэффициент усиления от 10000 до 30000.
В собранном виде конструкция усилителя выглядит так:
Конструкции радиоприёмников
Самое поразительное, что конструкции классического детекторного приёмника здесь нет. Но не всё так просто: она есть, но в качестве детектора там используется единственный в схеме транзистор.
Всё дело в напряжении смещения на базе транзистора. В приведённой схеме номинал резистора в цепи базы 4,3 МОм. С таким смещением на базе транзистор работает детектором. В усилительных каскадах номинал такого резистора — 1 МОм и меньше.
Ниже приведена схема приёмника «1-V-0», где левый по схеме транзистор работает как усилитель РЧ, а правый — как детектор:
Далее в разделе есть конструкции с разными экзотическими схемами. Например, схема рефлексного приёмника, когда один и тот же каскад используется и для усиления РЧ, и для усиления ЗЧ. Или приёмник с апериодическим входом, когда колебательный контур находится не на входе первого каскада, а на его выходе. Или приёмник с эмиттерным повторителем (ОК) в первом каскаде, что даёт повышение добротности входного колебательного контура.
После экспериментов со схемами приёмников все дети обычно останавливались на схеме «1-V-1». Подобное обозначение имеют схемы радиоприёмников с одним каскадом усилителя РЧ, детектором и одним каскадом усилителя ЗЧ.
«В центре композиции» находится детектор на диодах, собранный по схеме удвоителя напряжения. Величина прямого падения напряжения на германиевых диодах — порядка 0,3 В. Чтобы обеспечить работу детектора, амплитуда сигнала радиостанции должна быть больше этого значения. Для этого сигнал радиостанции, выделенный на настроенном в резонанс входном колебательном контуре усиливается каскадом ОЭ на левом по схеме транзисторе. Выделенный детектором сигнал ЗЧ усиливается каскадом ОЭ на правом по схеме транзисторе.
На внешнюю антенну такой приёмник принимает в диапазоне СВ несколько радиостанций.
Фотография собранной конструкции радиоприёмника по схеме «1-V-1»:
Конструкции генераторов
На долю детей поколения X хватило радиовещания на диапазонах ДВ и СВ. Дети поколения Y радиовещание на ДВ уже не застали. Детям поколения Z не досталось ни одной достаточно мощной для приёма на «детектор» местной радиостанции в диапазоне ДВ или СВ.
Зато дети всех поколений любят «постучать ключом».
На базе конструктора можно собрать генераторы трёх типов. Сначала даётся схема генератора, полученная из усилителя со стабилизацией путем замыкания входа (левый по схеме вывод конденсатора 0,01 мкФ) на выход (коллектор правого по схеме транзистора):
Затем даётся пример со схемой практически симметричного мультивибратора, сделанного, как и положено, на базе двухкаскадного усилителя по схеме ОЭ:
С такими схемами можно потренироваться работать на ключе, тем более, что азбука Морзе есть в приложении.
Третий тип генераторов — генераторы с индуктивной обратной связью на одном транзисторе. Они генерируют на только сигналы ЗЧ, но и сигналы РЧ. А с такой аппаратурой уже можно выйти в эфир.
Морзянка
Самая моя любимая конструкция, как водится, последняя в списке. Это конструкция №35 «Морзянка». Диапазон длинных волн (ДВ) для радиовещания не используется уже давно, но в этом диапазоне радиоприёмник может принять сигнал «Морзянки». Правда, сигнал очень слаб, принять его можно на расстоянии 1-2 метра, но и это вызывает дикий восторг у юных радиолюбителей. Проверено на детях поколений X, Y и Z.
Внешне «Морзянка» выглядит так:
Схема её очень проста, частота генерации задаётся настройками колебательного контура, положительная обратная связь осуществляется через катушку связи магнитной антенны. Телеграфный ключ включен после электролитических конденсаторов в цепи питания для предотвращения эффекта «чириканья» (CHIRP).
Видео работы «Морзянки» в эфире:
Секрет успеха «Электронных кубиков»
Модульный конструктор «Электронные кубики» был разработан и выпускался ВНИИ «Электронстандарт».
Мой конструктор для этого института был не первым. У него был предшественник: в №11 журнала «Радио» за 1969 год была статья о подобном радиоконструкторе, выпущенном в Ленинграде. Хотя конструктор из публикации и был изготовлен в 1977 году, состав комплектующих характерен для конца 60-х.
Через пару лет, в 1979 году, ВНИИ «Электростандарт» выпустит МРК-2: «Электронные кубики» на кремниевых транзисторах. Затем последуют «ЭКОН-1» и «ЭКОН-2». У них уже своя армия поклонников.
Данных о ВНИИ «Электронстандарт» очень мало. Вот что удалось найти в описании здания института:
… в 1966 г. ПКБ-170 было преобразовано в Научно-исследовательский институт нормализации и испытаний электронной техники (НИИНИЭТ), который в 1971 г. получил статус Всесоюзного научно-исследовательского института «Электронстандарт». С 1971 г. институт является головным в Комитете оборонных отраслей промышленности по стандартизации, метрологии, надежности, радиационной стойкости электронных приборов, а также по разработке контрольно-измерительного и испытательного оборудования.
Серьёзные люди, настоящие профессионалы, очень серьёзно отнеслись к разработке детского радиоконструктора. Они подобрали правильные схемы и дали их в правильной последовательности.
Итогом их разработки стало устройство, с помощью которого любой усидчивый ребёнок собирал работающий радиоприёмник за пять минут. Кому-то хватало работающей конструкции, кто-то шёл дальше и пытался собрать из кубиков что-то своё.
Никого из моих знакомых этот радиоконструктор не оставлял равнодушным. Он был сделан увлечёнными людьми для увлечённых людей.
Облачные серверы от Маклауд быстрые и безопасные.
Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!
Читайте также: