Конструкторы и деструкторы производных классов
В этой статье наследование описано на трех уровнях: beginner, intermediate и advanced. Expert нет. И ни слова про SOLID. Честно.
Что такое наследование?
Наследование является одним из основополагающих принципов ООП. В соответствии с ним, класс может использовать переменные и методы другого класса как свои собственные.
Класс, который наследует данные, называется подклассом (subclass), производным классом (derived class) или дочерним классом (child). Класс, от которого наследуются данные или методы, называется суперклассом (super class), базовым классом (base class) или родительским классом (parent). Термины “родительский” и “дочерний” чрезвычайно полезны для понимания наследования. Как ребенок получает характеристики своих родителей, производный класс получает методы и переменные базового класса.
Наследование полезно, поскольку оно позволяет структурировать и повторно использовать код, что, в свою очередь, может значительно ускорить процесс разработки. Несмотря на это, наследование следует использовать с осторожностью, поскольку большинство изменений в суперклассе затронут все подклассы, что может привести к непредвиденным последствиям.
В этом примере, метод turn_on() и переменная serial_number не были объявлены или определены в подклассе Computer . Однако их можно использовать, поскольку они унаследованы от базового класса.
Важное примечание: приватные переменные и методы не могут быть унаследованы.
Типы наследования
В C ++ есть несколько типов наследования:
- публичный ( public )- публичные ( public ) и защищенные ( protected ) данные наследуются без изменения уровня доступа к ним;
- защищенный ( protected ) — все унаследованные данные становятся защищенными;
- приватный ( private ) — все унаследованные данные становятся приватными.
Для базового класса Device , уровень доступа к данным не изменяется, но поскольку производный класс Computer наследует данные как приватные, данные становятся приватными для класса Computer .
Класс Computer теперь использует метод turn_on() как и любой приватный метод: turn_on() может быть вызван изнутри класса, но попытка вызвать его напрямую из main приведет к ошибке во время компиляции. Для базового класса Device , метод turn_on() остался публичным, и может быть вызван из main .
Конструкторы и деструкторы
В C ++ конструкторы и деструкторы не наследуются. Однако они вызываются, когда дочерний класс инициализирует свой объект. Конструкторы вызываются один за другим иерархически, начиная с базового класса и заканчивая последним производным классом. Деструкторы вызываются в обратном порядке.
Важное примечание: в этой статье не освещены виртуальные десктрукторы. Дополнительный материал на эту тему можно найти к примеру в этой статье на хабре.
Конструкторы: Device -> Computer -> Laptop .
Деструкторы: Laptop -> Computer -> Device .
Множественное наследование
Множественное наследование происходит, когда подкласс имеет два или более суперкласса. В этом примере, класс Laptop наследует и Monitor и Computer одновременно.
Проблематика множественного наследования
Множественное наследование требует тщательного проектирования, так как может привести к непредвиденным последствиям. Большинство таких последствий вызваны неоднозначностью в наследовании. В данном примере Laptop наследует метод turn_on() от обоих родителей и неясно какой метод должен быть вызван.
Несмотря на то, что приватные данные не наследуются, разрешить неоднозначное наследование изменением уровня доступа к данным на приватный невозможно. При компиляции, сначала происходит поиск метода или переменной, а уже после — проверка уровня доступа к ним.
Проблема ромба
Проблема ромба (Diamond problem)- классическая проблема в языках, которые поддерживают возможность множественного наследования. Эта проблема возникает когда классы B и C наследуют A , а класс D наследует B и C .
К примеру, классы A , B и C определяют метод print_letter() . Если print_letter() будет вызываться классом D , неясно какой метод должен быть вызван — метод класса A , B или C . Разные языки по-разному подходят к решению ромбовидной проблем. В C ++ решение проблемы оставлено на усмотрение программиста.
Ромбовидная проблема — прежде всего проблема дизайна, и она должна быть предусмотрена на этапе проектирования. На этапе разработки ее можно разрешить следующим образом:
- вызвать метод конкретного суперкласса;
- обратиться к объекту подкласса как к объекту определенного суперкласса;
- переопределить проблематичный метод в последнем дочернем классе (в коде — turn_on() в подклассе Laptop ).
Если метод turn_on() не был переопределен в Laptop, вызов Laptop_instance.turn_on() , приведет к ошибке при компиляции. Объект Laptop может получить доступ к двум определениям метода turn_on() одновременно: Device:Computer:Laptop.turn_on() и Device:Monitor:Laptop.turn_on() .
Проблема ромба: Конструкторы и деструкторы
Поскольку в С++ при инициализации объекта дочернего класса вызываются конструкторы всех родительских классов, возникает и другая проблема: конструктор базового класса Device будет вызван дважды.
Виртуальное наследование
Виртуальное наследование (virtual inheritance) предотвращает появление множественных объектов базового класса в иерархии наследования. Таким образом, конструктор базового класса Device будет вызван только единожды, а обращение к методу turn_on() без его переопределения в дочернем классе не будет вызывать ошибку при компиляции.
Примечание: виртуальное наследование в классах Computer и Monitor не разрешит ромбовидное наследование если дочерний класс Laptop будет наследовать класс Device не виртуально ( class Laptop: public Computer, public Monitor, public Device <>; ).
Абстрактный класс
В С++, класс в котором существует хотя бы один чистый виртуальный метод (pure virtual) принято считать абстрактным. Если виртуальный метод не переопределен в дочернем классе, код не скомпилируется. Также, в С++ создать объект абстрактного класса невозможно — попытка тоже вызовет ошибку при компиляции.
Интерфейс
С++, в отличии от некоторых ООП языков, не предоставляет отдельного ключевого слова для обозначения интерфейса (interface). Тем не менее, реализация интерфейса возможна путем создания чистого абстрактного класса (pure abstract class) — класса в котором присутствуют только декларации методов. Такие классы также часто называют абстрактными базовыми классами (Abstract Base Class — ABC).
Несмотря на то, что наследование — фундаментальный принцип ООП, его стоит использовать с осторожностью. Важно думать о том, что любой код который будет использоваться скорее всего будет изменен и может быть использован неочевидным для разработчика путем.
Наследование от реализованного или частично реализованного класса
Если наследование происходит не от интерфейса (чистого абстрактного класса в контексте С++), а от класса в котором присутствуют какие-либо реализации, стоит учитывать то, что класс наследник связан с родительским классом наиболее тесной из возможных связью. Большинство изменений в классе родителя могут затронуть наследника что может привести к непредвиденному поведению. Такие изменения в поведении наследника не всегда очевидны — ошибка может возникнуть в уже оттестированом и рабочем коде. Данная ситуация усугубляется наличием сложной иерархии классов. Всегда стоит помнить о том, что код может изменяться не только человеком который его написал, и пути наследования очевидные для автора могут быть не учтены его коллегами.
В противовес этому стоит заметить что наследование от частично реализованных классов имеет неоспоримое преимущество. Библиотеки и фреймворки зачастую работают следующим образом: они предоставляют пользователю абстрактный класс с несколькими виртуальными и множеством реализованных методов. Таким образом, наибольшее количество работы уже проделано — сложная логика уже написана, а пользователю остается только кастомизировать готовое решение под свои нужды.
Интерфейс
Наследование от интерфейса (чистого абстрактного класса) преподносит наследование как возможность структурирования кода и защиту пользователя. Так как интерфейс описывает какую работу будет выполнять класс-реализация, но не описывает как именно, любой пользователь интерфейса огражден от изменений в классе который реализует этот интерфейс.
Интерфейс: Пример использования
Прежде всего стоит заметить, что пример тесно связан с понятием полиморфизма, но будет рассмотрен в контексте наследования от чистого абстрактного класса.
Приложение выполняющее абстрактную бизнес логику должно настраиваться из отдельного конфигурационного файла. На раннем этапе разработки, форматирование данного конфигурационного файла до конца сформировано не было. Вынесение парсинга файла за интерфейс предоставляет несколько преимуществ.
Отсутствие однозначности касательно форматирования конфигурационного файла не тормозит процесс разработки основной программы. Два разработчика могут работать параллельно — один над бизнес логикой, а другой над парсером. Поскольку они взаимодействуют через этот интерфейс, каждый из них может работать независимо. Данный подход облегчает покрытие кода юнит тестами, так как необходимые тесты могут быть написаны с использованием мока (mock) для этого интерфейса.
Также, при изменении формата конфигурационного файла, бизнес логика приложения не затрагивается. Единственное чего требует полный переход от одного форматирования к другому — написания новой реализации уже существующего абстрактного класса (класса-парсера). В дальнейшем, возврат к изначальному формату файла требует минимальной работы — подмены одного уже существующего парсера другим.
Наследование предоставляет множество преимуществ, но должно быть тщательно спроектировано во избежание проблем, возможность для которых оно открывает. В контексте наследования, С++ предоставляет широкий спектр инструментов который открывает массу возможностей для программиста.
При использовании производных классов важно представлять себе, каким образом и когда исполняются конструкторы и деструкторы базового и производного классов. Начнем рассмотрение с конструкторов.
Как базовый класс, так и производный класс могут иметь конструкторы. (В многоуровневой иерархии классов каждый из классов может иметь конструкторы, но мы начинаем с наиболее простого случая.) Когда базовый класс имеет конструктор, этот конструктор исполняется перед конструктором производного класса. Например, рассмотрим следующую короткую программу:
Эта программа создает объект типа D_class1. Она выводит на экран следующий текст:
Base created
D_class1 created
Здесь d1 является объектом типа D_class1, производным класса Base. Таким образом, при создании объекта d1 сначала вызывается конструктор Base(), а затем вызывается конструктор D_class1().
Конструкторы вызываются в том же самом порядке, в каком классы следуют один за другим в иерархии классов. Поскольку базовый класс ничего не знает про свои производные классы, то его инициализация может быть отделена от инициализации производных классов и производится до их создания, так что конструктор базового класса вызывается перед вызовом конструктора производного класса.
В противоположность этому деструктор производного класса вызывается перед деструктором базового класса. Причину этого также легко понять. Поскольку уничтожение объекта базового класса влечет за собой уничтожение и объекта производного класса, то деструктор производного объекта должен выполняться перед деструктором базового объекта. Следующая программа иллюстрирует порядок, в котором выполняются конструкторы и деструкторы:
Эта программа выдаст следующий текст на экран:
Base created
D_class1 created
D_class1 destroyed
Base destroyed
Производный класс может служить базовым классом для создания следующего производного класса. Когда такое происходит, конструкторы исполняются в порядке наследования, а деструкторы — в обратном порядке. В качестве примера рассмотрим следующую программу, использующую класс D_class2, производный от класса D_ciass1:
Эта программа выдаст следующий результат:
Base created
D_class1 created
Base created
D_class1 created
D_class2 created
D_class2 destroyed
D_class1 destroyed
Base destroyed
D_class1 destroyed
Base destroyed
Прежде чем переходить к виртуальным функциям и полиморфизму, следует объяснить один из их важнейших атрибутов. Начнем с указателей. В общем случае указатель одного типа не может указывать на объект другого типа. Из этого правила, однако, есть исключение, которое относится только к производным классам. В С++ указатель на базовый класс может указывать на объект производного класса, полученного из этого базового класса. Предположим, например, что имеется базовый класс B_class и его производный класс D_class. В С++ любой указатель типа B_class* может также указывать на объект типа D_class. Например, если имеются следующие объявления переменных:
B_class *р; // указатель на объект типа B_class
B_class B_ob; // объект типа B_class
D_class D_ob; // объект типа D_class
то следующие присвоения абсолютно законны:
р = &В_оb; // р указывает на объект типа B_class
р = &D_ob; /* р указывает на объект типа D_class, являющийся объектом, порожденным от B_class */
Используя указатель р, можно получить доступ ко всем членам D_ob, которые наследованы от B_ob. Однако специфические члены D_ob не могут быть получены с использованием указателя р (по крайней мере до тех пор, пока не будет осуществлено приведение типов). Это является следствием того, что указатель «знает» только о членах базового типа и не знает ничего о специфических членах производных типов.
В следующей короткой программе иллюстрируется использование указателей на базовый класс. В ней определен класс B_class, от которого порожден класс D_class. Этот производный класс реализует функции простой автоматической телефонной книги.
В этом примере указатель р определен как указатель на класс B_class. Однако он может указывать также на объект производного класса D_class и может использоваться для доступа к членам производного класса, которые были определены в базовом классе. Вместе с тем следует запомнить, что этот указатель не может использоваться для доступа к членам, специфическим для производного класса, до тех пор, пока не выполнено приведение типов. Именно поэтому доступ к функции show_phone() осуществляется с использованием указателя dp, являющегося указателем на производный класс.
Если необходимо получить доступ к элементам производного класса с помощью указателя, имеющего тип указателя на базовый класс, необходимо воспользоваться приведением типов. Например, в следующей строке кода осуществляется вызов функции show_phone() класса D_ob:
((D_class *)р) ->show_phone();
Внешние скобки необходимы для того, чтобы ассоциировать приведение типа именно с указателем р, а не с возвращаемой величиной функции show_phone(). Хотя ничего неправильного с технической точки зрения в таком приведении типов нет, лучше исключить его использование, так как оно может служить дополнительным источником ошибок в коде.
Хотя указатель, имеющий тип указателя на базовый класс, может использоваться в качестве указателя на производный объект, обратное не имеет места. Это означает, что указатель, имеющий тип указателя на производный класс, не может использоваться для доступа к объектам базового типа. И еще одно замечание. Инкремент и декремент указателя выполняются по отношению к его базовому типу. Таким образом, если указатель на базовый тип указывает на объект производного класса, инкремент или декремент его не даст указатель на следующий объект производного класса. Поэтому нельзя использовать операции инкремента и декремента указателей, когда они указывают на объект производного класса.
Ссылки на производные классы
Ссылки на базовый класс могут быть использованы для ссылок на объект производного типа. Такая техника наиболее употребительна при работе с функциями. Если параметр является ссылкой на базовый класс, то он может принимать значение ссылки как на объект базового класса, так и на объекты производных типов.
Нигде не утверждается, что объект должен быть инициализирован, и программист может забыть инициализировать его или сделать это дважды.
ООП дает возможность программисту описать функцию, явно предназначенную для инициализации объектов. Поскольку такая функция конструирует значения данного типа, она называется конструктором . Конструктор всегда имеет то же имя, что и сам класс и никогда не имеет возвращаемого значения. Когда класс имеет конструктор, все объекты этого класса будут проинициализированы.
Если конструктор требует аргументы, их следует указать:
date today = date(6,4,2014); // полная форма
date xmas(25,12,0); // сокращенная форма
// date my_burthday; // недопустимо, опущена инициализация
Если необходимо обеспечить несколько способов инициализации объектов класса, задается несколько конструкторов:
class date <
int month, day, year;
public :
date( int , int , int ); // день месяц год
date( char *); // дата в строковом представлении
date(); // дата по умолчанию: сегодня
>;
Конструкторы подчиняются тем же правилам относительно типов параметров, что и перегруженные функции. Если конструкторы существенно различаются по типам своих параметров, то компилятор при каждом использовании может выбрать правильный:
Одним из способов сократить количество перегруженных функций (в том числе и конструкторов) является использование значений по умолчанию.
Конструктор по умолчанию
Конструктор, не требующий параметров, называется конструктором по умолчанию . Это может быть конструктор с пустым списком параметров или конструктор, в котором все аргументы имеют значения по умолчанию.
Конструкторы могут быть перегруженными, но конструктор по умолчанию может быть только один.
class date
int month, day, year;
public :
date( int , int , int );
date( char *);
date(); // конструктор по умолчанию
>;
При создании объекта вызывается конструктор, за исключением случая, когда объект создается как копия другого объекта этого же класса, например:
Однако имеются случаи, в которых создание объекта без вызова конструктора осуществляется неявно:
- формальный параметр – объект, передаваемый по значению, создается в стеке в момент вызова функции и инициализируется копией фактического параметра;
- результат функции – объект, передаваемый по значению, в момент выполнения оператора return копируется во временный объект, сохраняющий результат функции.
Во всех этих случаях транслятор не вызывает конструктора для вновь создаваемого объекта:
- date2 в приведенном определении;
- для создаваемого в стеке формального параметра;
- для временного объекта, сохраняющего значение, возвращаемое функцией.
Вместо этого в них копируется содержимое объекта-источника:
- date1 в приведенном примере;
- фактического параметра;
- объекта-результата в операторе return .
Конструктор копии
Как правило, при создании нового объекта на базе уже существующего происходит поверхностное копирование, то есть копируются те данные, которые содержит объект-источник. При этом если в объекте-источнике имеются указатели на динамические переменные и массивы, или ссылки, то создание копии объекта требует обязательного дублирования этих объектов во вновь создаваемом объекте. С этой целью вводится конструктор копии, который автоматически вызывается во всех перечисленных случаях. Он имеет единственный параметр — ссылку на объект-источник:
Деструкторы
Определяемый пользователем класс имеет конструктор, который обеспечивает надлежащую инициализацию. Для многих типов также требуется обратное действие. Деструктор обеспечивает соответствующую очистку объектов указанного типа. Имя деструктора представляет собой имя класса с предшествующим ему знаком «тильда» ~ . Так, для класса X деструктор будет иметь имя ~X() . Многие классы используют динамическую память, которая выделяется конструктором, а освобождается деструктором.
class date
int day, year;
char *month;
public :
date( int d, char * m, int y)
day = d;
month = new char [strlen(m)+1];
strcpy_s(month, strlen(m)+1,m);
year = y;
>
~date() < delete [] month; >// деструктор
>;
Поля, имеющие тип класса
Пусть имеется класс vect , реализующий защищенный массив, и необходимо хранить несколько значений для каждого такого массива: возраст, вес и рост группы лиц. Группируем 3 массива внутри нового класса.
Конструктор нового класса имеет пустое тело и список вызываемых конструкторов класса vect , перечисленных после двоеточия (:) через запятую (,). Они выполняются с целым аргументом i , создавая 3 объекта класса vect: a, b, c .
Конструкторы членов класса всегда выполняются до конструктора класса, в котором эти члены описаны. Порядок выполнения конструкторов для членов класса определяется порядком объявления членов класса. Если конструктору члена класса требуются аргументы, этот член с нужными аргументами указывается в списке инициализации. Деструкторы вызываются в обратном порядке.
Здравствуйте, у меня такой вопрос. В коде я не нашел сам деструктор. Он создается и запускается сам после выхода из блока main ?
Наследование — это механизм создания нового класса на основе уже существующего. При этом к существующему классу могут быть добавлены новые элементы (данные и функции), либо существующие функции могут быть изменены. Основное назначение механизма наследования — повторное использование кодов, так как большинство используемых типов данных являются вариантами друг друга, и писать для каждого свой класс нецелесообразно.
Объекты разных классов и сами классы могут находиться в отношении наследования, при котором формируется иерархия объектов, соответствующая заранее предусмотренной иерархии классов.
Иерархия классов позволяет определять новые классы на основе уже имеющихся. Имеющиеся классы обычно называют базовыми (иногда порождающими), а новые классы, формируемые на основе базовых, – производными (порожденными, классами-потомками или наследниками).
При наследовании некоторые имена методов (функций-членов) и полей (данных-членов) базового класса могут быть по-новому определены в производном классе. В этом случае соответствующие компоненты базового класса становятся недоступными из производного класса. Для доступа из производного класса к компонентам базового класса, имена которых повторно определены в производном, используется операция разрешения контекста ::
Для порождения нового класса на основе существующего используется следующая общая форма
При объявлении порождаемого класса МодификаторДоступа может принимать значения public , private , protected либо отсутствовать, по умолчанию используется значение private . В любом случае порожденный класс наследует все члены базового класса, но доступ имеет не ко всем. Ему доступны общие ( public ) члены базового класса и недоступны частные ( private ).
Для того, чтобы порожденный класс имел доступ к некоторым скрытым членам базового класса, в базовом классе их необходимо объявить со спецификацией доступа защищенные ( protected ).
Члены класса с доступом protected видимы в пределах класса и в любом классе, порожденном из этого класса.
Общее наследование
При общем наследовании порожденный класс имеет доступ к наследуемым членам базового класса с видимостью public и protected . Члены базового класса с видимостью private – недоступны.
Спецификация доступа | внутри класса | в порожденном классе | вне класса |
private | + | — | — |
protected | + | + | — |
public | + | + | + |
Общее наследование означает, что порожденный класс – это подтип базового класса. Таким образом, порожденный класс представляет собой модификацию базового класса, которая наследует общие и защищенные члены базового класса.
Порожденный класс наследует все данные класса student (строка 13), имеет доступ к protected и public — членам базового класса. В новом классе добавлено два поля данных (строки 16, 17), и порожденный класс переопределяет функцию print() (строки 20, 39-43).
Конструктор для базового класса вызывается в списке инициализации (строка 29).
Но что происходит, когда мы присваиваем указателю класса student ссылку на объект класса grad_student (строка 55)? В этом случае происходит преобразование указателей, и в строке 56 вызывается уже функция print() класса student .
Указатель на порожденный класс может быть неявно передан в указатель на базовый класс. А указатель на порожденный класс может указывать только на объекты порожденного класса. То есть обратное преобразование недопустимо
Неявные преобразования между порожденным и базовым классами называются предопределенными стандартными преобразованиями :
- объект порожденного класса неявно преобразуется к объекту базового класса.
- ссылка на порожденный класс неявно преобразуется к ссылке на базовый класс.
- указатель на порожденный класс неявно преобразуется к указателю на базовый класс.
Частное наследование
Порожденный класс может быть базовым для следующего порождения. При порождении private наследуемые члены базового класса, объявленные как protected и public , становятся членами порожденного класса с видимостью private . При этом члены базового класса с видимостью public и protected становятся недоступными для дальнейших порождений. Цель такого порождения — скрыть классы или элементы классов от использования их в дальнейших порождениях. При порождении private не выполняются предопределенные стандартные преобразования:
Однако порождение private позволяет отдельным элементам базового класса с видимостью public и protected сохранить свою видимость в порожденном классе. Для этого необходимо
- в части protected порожденного класса указать те наследуемые члены базового класса с видимостью protected , уточненные именем базового класса, для которых необходимо оставить видимость protected и в порожденном классе;
- в части public порожденного класса указать те наследуемые члены базового класса с видимостью public , уточненные именем базового класса, для которых необходимо оставить видимость public и в порожденном классе.
class X
private :
int n;
protected :
int m;
char s;
public :
void func( int );
>;
class Y : private X
private :
.
protected :
.
X::s;
public :
.
X::func();
>;
Возможен и третий вариант наследования – с использованием модификатора доступа protected .
Доступ к элементам базового класса из производного класса, в зависимости от модификатора наследования:
Конструкторы и деструкторы при наследовании
Как базовый, так и производный классы могут иметь конструкторы и деструкторы.
Если и у базового и у производного классов есть конструкторы и деструкторы, то конструкторы выполняются в порядке наследования, а деструкторы – в обратном порядке. То есть если А – базовый класс, В – производный из А , а С – производный из В ( А-В-С ), то при создании объекта класса С вызов конструкторов будет иметь следующий порядок:
- конструктор класса А
- конструктор класса В
- конструктор класса С .
Вызов деструкторов при удалении этого объекта произойдет в обратном порядке:
- деструктор класса С
- деструктор класса В
- деструктор класса А .
Поскольку базовый класс «не знает» о существовании производного класса, любая инициализация выполняется в нем независимо от производного класса, и, возможно, становится основой для инициализации, выполняемой в производном классе. Поскольку базовый класс лежит в основе производного, вызов деструктора базового класса раньше деструктора производного класса привел бы к преждевременному разрушению производного класса.
Конструкторы могут иметь параметры. При реализации наследования допускается передача параметров для конструкторов производного и базового класса. Если параметрами обладает только конструктор производного класса, то аргументы передаются обычным способом. При необходимости передать аргумент из производного класса конструктору родительского класса используется расширенная запись конструктора производного класса:
КонструкторПроизводногоКласса (СписокФормальныхАргументов)
: КонструкторБазовогоКласса (СписокФактическихАргументов)
< // тело конструктора производного класса >
Для базового и производного классов допустимо использование одних и тех же аргументов. Возможно, списки аргументов конструкторов производного и базового классов будут различны.
Конструктор производного класса не должен использовать все аргументы, часть предназначены для передачи в базовый класс (строка 29, см. код выше). В расширенной форме объявления конструктора производного класса описывается вызов конструктора базового класса.
Здравствуйте! а подскажите, пожалуйста, как я могу объявить неполный наследуемый класс? Например, у меня есть class a b class b, наследуемый откласса а. я хочу неполно объявить класс b перед классом а. как это синтаксически сделать? нигде не могу найти инфу об этом.
Читайте также: