Ев3 задания лего задания
Начните изучение информатики и предметов естественно-научного и технического цикла (STEM) с помощью LEGO® MINDSTORMS® Education EV3. Предлагаемые учебные курсы рассчитаны на учеников от 10 до 16 лет и соответствуют требованиям ФГОС. В комплект поставки входят учебные материалы для обучающихся, материалы для педагогов, инструменты оценки успеваемости, примеры программ и инструкции по сборке моделей.
Задания EV3 Maker
Для выполнения этих шести заданий необходим Базовый набор LEGO® MINDSTORMS® Education EV3 (45544). Кроме того, предоставляются вспомогательные материалы для педагогов и учащихся основной школы, содержащие всё необходимое для развития навыков конструирования в процессе создания моделей для решения существующих задач из различных областей реальной жизни.
Программа занятий по информатике EV3
Этот Комплект заданий представляет собой практикум в формате PDF для организации увлекательных проектных работ по информатике общей продолжительностью до 30 академических часов. В практикум входят 12 проектных работы по информатике, включая примеры заданий в нотациях LabVIEW и RobotC, с возможностью межпредметного обучения проектированию и технологиям, естественным наукам и математике. Ученики смогут изучить реально существующие технологии, применяемые в автомобилестроении, что позволит им применять и развивать свои навыки программирования. С образцами программ можно ознакомиться, выбрав «Поддержка» вверху страницы.
Комплект заданий «Инженерные проекты EV3»
Комплект дает возможность проведения более 30 часов урочной и проектной учебной деятельности, направленной на изучение технологии по средством STEM методик и робототехники. Каждая из 15 проектных работ начинается с этапа проектирования решения и заканчивается тестирование и улучшением финального прототипа, по итогам которого можно подготовить презентацию. Для работы данного Комплекта заданий требуется наличие установленной образовательной версии ПО EV3.
Комплект заданий «Физические эксперименты EV3»
Данный Комплект заданий дает возможность проведения более 28 часов учебных занятий по физике. Комплект включает в себя 14 лабораторных работ по физике из курса 7-9 классов, касающихся вопросов передачи и генерации энергии, тепла и температуры, силы и движения, а также света. Учащиеся смогут фиксировать и анализировать результаты экспериментов в реальном режиме времени. Для проведения некоторых экспериментов необходимо наличие Дополнительного набора «Возобновляемые источники энергии» (арт. 9688) и «Датчика температуры NXT» (арт. 9749). Для работы данного Комплекта заданий требуется наличие установленной образовательной версии ПО EV3.
Комплект заданий «Космические проекты EV3»
Для работы с этим Комплектом занятий требуется наличие Базового набора LME EV3 и Дополнительного набора "Космические проекты EV3" (арт. 45570). Комплект дает возможность организации более 30 часов урочной и внеурочной работы в классе. В комплект входят тренировочные задания и тематические исследовательские проекты, разработанные совместно с учеными — исследователями космоса. Учащиеся смогут заниматься исследовательской работой и создавать инновационные решения по актуальным темам в области освоения космоса. Для работы данного Комплекта заданий требуется наличие установленной образовательной версии ПО EV3.
Введение:
Наше третье занятие мы посвятим изучению вычислительных возможностей модуля EV3 и разберем примеры практических решений задач на вычисление траектории движения. Снова запускаем среду программирования Lego mindstorms EV3, загружаем наш проект lessons.ev3 и добавляем в проект новую программу - lesson-3-4. Добавлять новую программу в проект мы научились с вами на предыдущем уроке.
3.1. Красная палитра – операции с данными
Программные блоки, необходимые для выполнения различных операций над числовыми, логическими или текстовыми данными, сосредоточены в красной палитре среды программирования Lego mindstorms EV3. Красная палитра содержит 10 программных блоков. В отличие от зеленой палитры - с программными блоками красной палитры мы будем знакомиться постепенно, по мере продвижения по курсу программирования и возникновения необходимости в новых программных конструкциях.
Рис.1
3.2. Числовые значения. Блок "Константа", блок "Переменная"
Среда программирования Lego mindstorms EV3 позволяет нам обрабатывать в своих программах пять различных типов данных:"Текст", "Числовое значение", "Логическое значение", "Числовой массив", "Логический массив". В сегодняшнем уроке мы научимся оперировать с числовыми данными. Тип данных "Числовое значение" позволяет нам выполнять различные математические операции над числами. Числа в программе могут быть как положительными, так и отрицательными, быть целыми значениями или содержать десятичную дробь. Примеры: -15; 3,145; 8; -247,34.
Перед тем, как начать обрабатывать различные типы данных в наших программах, нам надо научиться их создавать и хранить. Для этих целей среда программирования Lego mindstorms EV3 предоставляет два вида программных блоков: "Переменная" и "Константа". Эти блоки позволяют создать в памяти робота специальные ячейки, позволяющие записывать, извлекать и редактировать различные типы данных. Программный блок "Константа" (Рис. 2) позволяет создавать ячейку памяти для хранения одного из пяти типов данных (Рис. 2 поз. 1). Требуемое значение записывается в ячейку на этапе создания программы (Рис. 2 поз. 2) и остается неизменным во время выполнения всей программы. Для получения значения, записанного в блок "Константа" используется "Вывод" (Рис. 2 поз. 3). Подробнее с извлечением данных из программных блоков мы познакомимся ниже при решении практической задачи Урока №3.
Рис. 2
В отличие от программного блока "Константа" - в блоке "Переменная" присутствуют два режима "Считывание" и "Записать" (Рис. 3 поз. 1). Перед первым использованием необходимо задать имя переменной, выбрав параметр блока "Добавить переменную" (Рис. 3 поз. 2). Имя переменной может содержать только заглавные и строчные буквы латинского алфавита, цифры, а также символы _ и -. Задать значение переменной можно, записав или передав число в параметр "Значение" (Рис. 3 поз. 3).
Рис. 3
3.3. Блок математика, блок округление
Для выполнения математических вычислений служит программный блок "Математика". Он позволяет выполнить выбранную математическую операцию (Рис. 4 поз. 1) над двумя числами, заданными параметрами "a" и "b". В режимах "Абсолютная величина" и "Квадратный корень" для вычисления доступен только один параметр "a".
Рис. 4
Отдельно следует остановиться на режиме "Дополнения". В этом режиме количество параметров для расчета увеличивается до четырех: "a", "b", "c" и "d". В параметр "Уравнение" (Рис. 5 поз. 1) можно вписать любую произвольную формулу, производящую вычисления с этими параметрами.
Рис. 5
Иногда возникает необходимость произвести округление результата вычисления. Например: при отладке программы, можно выводить на экран модуля EV3 округленные промежуточные расчеты, чтобы легче было визуально контролировать ход выполнения программы. Для этого предназначен программный блок "Округление" (Рис. 6). Режимы "До ближайшего", "Округлить к большему" и "Округлить к меньшему" производят округление до целого значения. В режиме "Отбросить дробную часть" можно задать количество остающихся знаков дробной части после запятой.
Рис. 6
3.4. Примеры выполнения вычислений в программе
Настало время применить полученные знания на практике.
Задача №4: необходимо написать программу прямолинейного движения для проезда роботом расстояния в 1 метр.
Решение:
За один полный оборот мотора робот проезжает расстояние, равное длине окружности колеса. Это расстояние можно найти, умножив число Пи (=3,14159) на диаметр колеса. Диаметр колеса из образовательного набора Lego mindstorms EV3 равен 56 мм, а - из домашнего набора Lego mindstorms EV3 равен 43,2 мм. Если переведем расстояние в 1 метр в миллиметры (1000 мм) и разделим на расстояние, которое робот проходит за один оборот мотора, то узнаем: сколько оборотов мотора необходимо для проезда всего заданного расстояния.
Рис. 7
Приступим к созданию программы:
- Используя программный блок "Константа", заведем в программу постоянное число Пи, равное примерно 3,14159.
- Используя программный блок "Переменная", создадим в программе переменную D и занесем в нее значение диаметра колеса в зависимости от используемого конструктора (если вы использовали другие колеса, то самостоятельно измерьте диаметр и внесите значение в программный блок).
- Используя программный блок "Математика", умножим значение блока "Константа" на значение переменной D. Для передачи значения из переменной D в программный блок "Математика" используем второй программный блок "Переменная" в режиме "Считывание"! (Для передачи значений между программными блоками используются шины данных. Чтобы установить шину данных, необходимо "потянуть" выходной параметр одного программного блока и "присоединить" его к входному параметру другого программного блока)
- Используя программный блок "Математика", разделим значение пути (1000 мм) на значение, полученное в шаге 3.
- Полученное в шаге 4 значение. округлив до двух знаков после запятой, выведем на экран модуля EV3.
- Полученное в шаге 4 значение подадим в параметр "Обороты" блока "Рулевое управление".
Загрузим полученную программу в нашего робота. Поставим робота на ровную свободную площадку и запустим программу. Измерив расстояние, пройденное роботом, убедимся в правильности нашей программы!
Задача №5: необходимо написать программу, рассчитывающую значение параметра "Градусы" для разворота нашего робота (Урок №2, Задача №1)
Данная задача имеет сходство с предыдущей - нам только требуется найти расстояние, которое должны проехать колеса нашего робота. Для того, чтобы наш робот развернулся на 180 градусов - необходимо, чтобы правое и левое колеса, проехав определенный путь по окружности, поменялись местами. Как видим из Рис. 8 - каждое колесо при этом проедет ровно половину окружности с диаметром, равным расстоянию между центрами колес (красная линия на Рис. 8). Подходящей линейкой померяем расстояние между центрами колес. Для робота, собранного по инструкции small-robot-45544, это расстояние равно 120 мм. Следовательно, умножив это значение на число Пи (3,14159) и разделив на 2, мы найдем расстояние, которое должно проехать каждое из колес нашего робота. Как найти соответствующее этому расстоянию число оборотов мотора - мы разобрали в Задаче 4 данного урока. Для того, чтобы перевести полученное число оборотов в градусы - вспомним соотношение: 1 оборот мотора = 360 градусов. Следовательно, если мы, воспользовавшись программным блоком "Математика", умножим полученное значение оборотов на 360 и подадим результат в параметр "Градусы" программного блока "Независимое управление моторами" (Урок №2 Рис.7 поз. 2), то решим требуемую задачу.
Рис. 8
Попробуйте написать программу для решения задачи №5 самостоятельно, не подглядывая в решение!
Всё на русском языке о роботах LEGO MINDSTORMS EV3 и NXT: различные инструкции к конструкторам разных версий, информация о версиях, скриншоты готовых моделей, фото и видео занятий по робототехнике. Также мы выкладываем пошаговые инструкции по созданию и программированию разных видов роботов лего из конструктора версии 8547. У нас можно скачать поурочное планирование факультатива робототехники для учеников 6-8 классов. Планируем добавить всю необходимую для роботехника-любителя информацию. Всё будет доступно всегда и бесплатно!
Роботов учат воспринимать эмоции
Главная цель ученых - научить неживых роботов взаимодействовать с человеком на эмоциональном уровне. Координатор проекта Лола Канамеро (Lola Canamero) сказала, что их зад.
Южная Корея анонсировала масштабный план развития роботехнической отрасли
Рубрика: Робот LEGO MINDSTORMS EV3 и NXT инструкции
На первой странице мы с Вами познакомимся с внешним видом конструкторов lego mindstoms ev3 и инструкциями (інструкциї lego) на русском языке для них.
Сейчас доступны к скачиванию статьи с готовыми пошаговыми инструкциями по сборке различных моделей роботов из конструктора лего ев3 версии 313313 и 45544 (робот lego mindstorms ev3).
Руководство пользователя (EV3 Home) для домашней версии, артикул 31313 - инструкция на русском языке для lego mindstorms ev3.
Элементная база (из каких деталей состоит набор), как выглядит содержимое коробки лего 31313.
Базовый набор LEGO MINDSTORMS Education EV3 (артикул 45544).
Версия набора - образовательная (для школ).
Элементная база набора.
Инструкция lego mindstorms ev3:
руководство пользователя (EV3 education) для учебной версии, артикул 45544.
лего EVO 3 презентация pptx с описанием и возможностями набора.
Имеются две модификации: HOME и EDUCATIONS (Домашняя и образовательные версии). Каждая версия имеет свои особенности. Но в каждой можно собрать отличные модели роботов из лего! Домашняя попроще и подешевле, а образовательная версия с лицензионным ПО LABVIEW для рабочей группы от NATIONAL INSTRUMENS, естественно, подороже.
Купить набор в Зеленогорске (Красноярский край) можно в компании "Компас". Скачивайте, ознакамливайтесь с ПО, внешним видом и способом соединения, настройки и программирования новой модели от лего!
Робота можно использовать для соревнования "Шорт трек" категории "Hello, robot!". Инструкция (презентация) содержится 45 слайдов, многие слайды являются повторами с разных углов обзора.
Возраст обучающихся: 4 – 8 классы. УМК любой. Презентация выполнена при помощи ПО Lego Digital Designer ver.4.3.:
полная инструкция по сборке в pptx
Бонусные модели 6 роботов EV3 на одной платформе (6 роботов в 1):
Созданный специально для роботов EV3 (45544) комплект заданий "Инженерные проекты" - это 30-часовой пакет учебных материалов, включающий в себя задания для класса по работе над проблемами с открытым решением.
"Инженерные проекты" делают изучение естествознания, технологии, конструирования и математики невероятно увлекательным!
Учебные материалы состоят из трех основных разделов, каждый из которых включает 5 проектных работ, в общей сложности вы получаете 15 проектных работ:
Ученикам предлагается разрабо.
Учебные материалы состоят из трех основных разделов, каждый из которых включает 5 проектных работ, в общей сложности вы получаете 15 проектных работ:
Ученикам предлагается разработать, построить и запрограммировать роботов, которые двигаются с помощью моторов, оснащенных датчиками вращения.
В пяти проектах ученики применяют математические и научные знания для создания роботов, которые измеряют расстояние, скорость, двигаются без колес, максимизируют мощность для передвижения вверх по наклонной поверхности, двигаются и поворачиваются по правильному прямоугольнику.
Кроме того, ученики смогут применить свои знания простых и сложных механизмов, используя алгоритмы для описания пропорциональных взаимоотношений.
Ученикам предлагается добавить к своему роботу датчики для управления поведением, а затем измерить данные, полученные с датчиков, построить по ним графики и проанализировать их.
В пяти проектах ученики разрабатывают роботов, которые используют датчики для измерения внешнего освещения и отраженного света, определения указанных цветов, измерения расстояния до объекта, распознавания состояния датчика касания (нажатое, ненажатое или нажатое и отпущенное) и измерения углового смещения или частоту вращения.
Ученикам предлагается разработать, построить и запрограммировать робототехнические системы, состоящие из нескольких роботов.
В пяти проектах ученики разрабатывают системы, которые передвигают шар, поднимают и ставят объекты, симулируют производство, сортируют по цвету и сообщают о своем местоположении. Ученики тестируют свои системы, собирают данные и используют собранные факты для оптимизации систем и их усовершенствования.
Структура заданий из комплекта "Инженерные проекты" повторяет процессы и учитывает стандарты проведения проектных работ, которые используются настоящими инженерами в различных отраслях промышленности.
Каждый проект начинается с краткого объяснения задания. Ученикам демонстрируются видеозаписи, показывающие реально существующих роботов в действии. А затем ребята строят, программируют, тестируют и обсуждают свои собственные проекты.
На протяжении всего процесса ученики получают знания по естествознанию, технологии, конструированию и математике.
Таким образом, структура заданий этого набора способствует развитию навыков обучения 21-го века, включая коммуникативные навыки и навыки решения сложных задач.
Комплект заданий "Инженерные проекты" поставляется в цифровом виде и устанавливается на ПК, становясь частью программного окружения EV3. Встроенный редактор контента позволит преподавателям модифицировать существующие и создавать свои собственные задания. А ученики смогут фиксировать свои успехи по мере выполнения заданий во встроенных электронных тетрадях, облегчая преподавателям контроль как прогресса, так и конечного результата.
Комплект заданий "Инженерные проекты" отвечает национальным стандартам образования.
На этой странице собраны инструкции по сборке роботов или механизмов из стартового образовательного набора LEGO MINDSTORMS Education EV3 (45544). Кроме инструкций вы найдёте здесь видео, показывающие возможности собранных моделей, и демонстрационные программы. Для некоторых моделей даны рекомендации, с помощью каких приложений можно дистанционно управлять роботами и как настраивать эти приложения.
Имея под рукой образовательный набор LEGO Mindstorms EV3 (45544) и шарики для пинг-понга вполне можно собрать пушку, стреляющую шариками. Пушкой можно управлять со смартфона с помощью приложения RoboCam.
Если вы горите желанием сделать робота с большими колёсами из образовательного набора LEGO Mindstorms EV3 (45544), но у вас нет таких колёс, не расстраивайтесь. Вы можете изготовить их самостоятельно из толстого гофрированного картона. Как сделать робота с большими картонными колёсами, чтобы колёса нормально крутились и не отваливались, я предлагаю вам прочитать в этой статье.
Мне очень понравился проект робота-художника EV3 Print3rbot, в котором, к сожалению, используются нестандартные детали, которые нужно печатать на 3D-принтере. Я решил собрать такого же робота, но используя детали только из образовательного набора LEGO Mindstorms EV3 (45544). И у меня это получилось, правда, пришлось добавить ещё резинок.
Роботом, собранным из конструктора LEGO Mindstorms EV3, вы легко можете управлять дистанционно от первого лица. Для этого вам дополнительно понадобится два смартфона, с установленным приложением RoboCam на один из них. Давайте познакомимся подробнее с приложением RoboCam и научимся им пользоваться.
Используя конструктор LEGO MINDSTORMS EV3 и веб-камеру, вы сможете провести эксперимент по обнаружению лиц в помещении. Для эксперимента подойдёт любой колёсный робот EV3, который умеет вращаться на месте, и на который вы сможете закрепить веб камеру. Робот будет сканировать помещение, поворачиваясь вокруг, а, увидев лица, будет останавливаться и дёргаться столько раз, сколько лиц увидел.
С помощью веб-камеры и образовательного набора конструктора LEGO MINDSTORMS Education EV3 (45544) вполне можно сделать робота, отслеживающего двигающийся объект. Робот сможет не только поворачивать камеру в сторону объекта, но и выдерживать определённую дистанцию до него, т.е. подъехать поближе, если объект удаляется от камеры, или отъехать подальше, если объект приближается. О том, как это сделать поговорим в этой статье.
Гимнаста выполняющего различные упражнения на турнике сделать достаточно просто, если у вас есть образовательный конструктор LEGO MINDSTORMS Education EV3 (45544). Я научил гимнаста выполнять три упражнения, а вы можете научить его и другим различным трюкам.
Гоночную машину, имитирующую болид формулы 1, можно сделать с помощью образовательного набора LEGO MINDSTORMS Education EV3 (45544). В машине сидит водитель и держится за руль. Машина дистанционно управляется с Android-смартфона.
Робот мойщик пола передвигается за счёт поворотов двух дисков параллельно полу. С помощью резинок на диски можно закрепить смоченные моющим раствором тряпки и тогда ваш пол станет немного чище.
Этот робот с клешнёй умеет не только хватать, но и приподнимать предметы. И оба эти действия он делает с помощью всего одного мотора. А за счёт резиновых кончиков клешни, робот может приподнимать даже скользкие предметы. Ну и конечно, то, что робот схватил, он может перевезти на другое место.
Селеноход – это луноход, созданный российской командой для участия в конкурсе Google Lunar X PRIZE. В настоящий момент проект закрыт, но интересная конструкция с не менее интересной системой передвижения по лунной поверхности остались. С помощью стартового образовательного набора LEGO MINDSTORMS Education EV3 (45544) возможно собрать модель Селенохода, который будет передвигаться по такому же принципу и так же поднимать и опускать «голову».
В базовом образовательном наборе LEGO Mindstorms Education EV3 (45544) оказалось достаточно шестерёнок и других деталей, чтобы собрать часы с часовой и минутной стрелками. Кроме того, что часы точно отображают время, они издают звуковой сигнал каждый час.
В образовательном наборе конструктора Mindstorms Education EV3 всё обучение робототехники в классе ведётся с помощью приводной платформы, на колёсном ходу. Мне же захотелось сделать точно такую же платформу, чтобы на неё точно также можно было установить все датчики, но только, чтобы она передвигалась с помощью гусениц.
Читайте также: