Заводные игрушки принцип работы
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Столичный центр образовательных технологий г. Москва
Получите квалификацию учитель математики за 2 месяца
от 3 170 руб. 1900 руб.
Количество часов 300 ч. / 600 ч.
Успеть записаться со скидкой
Форма обучения дистанционная
Выставка на тему:
«Физика в игрушках».
-Подвести учащихся к формированию системы знаний, необходимых для объяснения принципа работы игрушек, действие которых основано на существовании Архимедовой силы; заводных игрушек; инерционных игрушек; звуковых игрушек; игрушек, действие которых основано на различном положении центра тяжести; электрических и магнитных игрушек.
- Побуждать учащихся к выполнению мыслительных операций: анализа, синтеза, сравнения, обобщения.
- Способствовать воспитанию аккуратности, эстетических чувств, навыков коммуникативного общения.
Оборудование:
1. Физические газеты по темам:
-Игрушки, действие которых основано на существовании Архимедовой силы;
-Игрушки, действие которых основано на различном положении центра тяжести;
2. Различные игрушки:
-машина с программным управлением;
-игрушки на батарейках;
4. Презентация по теме: «Физика и детская игрушка».
5. Железная коробка.
6. Определения, записанные на плакате:
7. Подъёмный столик;
10. Наклонная плоскость;
11. Цилиндр, шарик;
12. Заводные машины, робот, цыплёнок;
13. Столбик монет, линейка железная;
14. Автомобиль с куклой;
15. Птичка Хоттабыча;
16. Штатив с грузами и ниткой;
17. Камертон с молоточком.
18. Штатив, на котором подвешена нить с шариком.
Первый ведущий:
С самого раннего детства нас окружают различные любимые игрушки. У каждого они свои.
И редко кто из нас не задумывался над тем, как устроены игрушки, не пытался заглянуть во внутрь игрушки.
Сегодня мы познакомимся со многими игрушками, узнаем о их устройстве, принципе действия и попытаемся ответить на вопрос: С какой наукой связано устройство многих игрушек?
Игрушки, действие которых основано на существовании Архимедовой силы.
1. Наша Таня громко плачет
Уронила в речку мячик
Тише, Танечка, не плачь
Не утонет в речке мяч.
2.Кристина прочитала стихотворение Маршака. Почему не утонет мяч и вот эти игрушки? (называет и показывает их).
1. Эти игрушки обладают большой подъёмной силой, потому что их вес намного меньше, действующей на них со стороны воды выталкивающей силы. И если вы не умеете плавать, то вам помогут удержаться на воде вот эти игрушки.
2. В существовании выталкивающей силы легко убедиться на опыте. Закрепим в лапке штатива динамометр, подвесим к нему тело на нити и заметим показания динамометра. Возьмём стакан с водой и поднесём под груз, будем поднимать стакан до тех пор, пока тело на нити не погрузится целиком в воду. Заметим показания динамометра, видим, что они уменьшились. Это произошло потому, что со стороны воды на тело действует Архимедова сила.
1. Величина выталкивающей силы зависит от плотности жидкости.
Опустим в банку с водой яйцо – оно тонет. Будем подсыпать в воду соль. По мере увеличения солёности воды яйцо всплывает.
2. Законы плавания тел использованы в устройстве детской игрушки «водолаз». Вес «водолаза» подобран таким образом, что при заполнении полости игрушки водой её вес становится больше выталкивающей силы, и, «водолаз» погружается на дно, а при заполнении полости воздухом выталкивающая сила становится больше веса игрушки, и «водолаз» всплывает.
1. Можно самим сделать интересную игрушку – «плавающий подсвечник». Воткнём снизу посредине свечи кнопку или небольшой гвоздик, для того чтобы свеча, плавая у поверхности воды, сохраняла вертикальное положение и не опрокидывалась. Если плавающую свечу зажечь, её вес будет постепенно уменьшаться, но и объём погружённой в воду части свечи также будет становиться всё меньше и меньше. Равенство между весом свечи и выталкивающей силой не будет нарушаться.
2. Обратите внимание на наш бассейн. Вы видите здесь много лодочек, корабликов. Представьте себе, что вот этот катер – большой корабль. Его только что построили и должны узнать предельный вес груза, который может принять этот корабль. Но не могут же нагружать корабль до тех пор, пока он не утонет, и таким образом узнать предельный вес груза.
Наибольший допустимый вес груза узнают заранее.
1. ( Опускают в воду железную коробку, она плавает).
Опустим в воду железную коробку, она плавает, это показывает, что коробка вытесняет своей подводной частью количество воды, равное её весу. В этом отношении все суда похожи на нашу коробку.
-Глубину, на которую судно погружается в воду, называют осадкой.
-Наибольшую допускаемую осадку судна отмечают на корпусе красной линией, называемой ватерлинией. ( показывает на игрушках).
-Вес вытесняемой судном воды при погружении до ватерлинии, равный силе тяжести судна с грузом, называется водоизмещением судна.
1. А вот какой кораблик изготовил Сергей. Вырезал его из толстой
сосновой коры и дно снабдил килем из железной пластинки.
Красная линия на нём – это ватерлиния.
Посмотрите, как хорошо держится кораблик на воде!
3. Итак, законы плавания тел всегда учитываются при изготовлении
Игрушек, поэтому они и сами плавают на воде, и нам помогают плавать.
Заводные игрушки.
1.Очень давно, ещё маленькими мы полюбили эти игрушки: жёлтого
цыплёнка, зайку, робота.
А как лихо мчится машина уазик или этот паровозик. ( демонстрирует).
2. Почему движутся игрушки? Разберёмся в этом, ознакомившись с
устройством игрушки «курочка-ряба».
Механизм, при помощи которого происходит движение курочки
состоит из основного вала и двух ведомых, пружины и зубчатого колеса
(показывает). Сжатая пружина обладает потенциальной энергией. За
Счёт потенциальной энергии тело может совершать работу.
1. Поместим пружину на металлический стержень от подъёмного столика.
Сожмём пружину и свяжем её ниткой. Подожжём нитку, пружина
взлетает высоко вверх. Пружина приобрела скорость, так как её
потенциальная энергия перешла в кинетическую.
2.С наклонной плоскости пустили цилиндр, на пути которого находится
шарик. Шарик тоже приходит в движение, так как цилиндр ударяется о
шарик и передаёт часть энергии, шарик движется, так как обладает
1.Вернёмся к нашей игрушке. Потенциальная энергия пружины
превращается в кинетическую энергию механизма, и ножки курочки
приходят в движение.
2.У нас на выставке есть и другие игрушки, которые после завода могут
двигаться. Устроены они примерно так же как и курочка-ряба.
Это цыплёнок, уточка, петушок, зайчик, заводные автомобили, робот, паровозик.
Инерционные игрушки.
1 . Вы, ребята, смотрели сейчас заводные игрушки. А мои игрушки не требуют завода, но тоже движутся. (показывает движущийся автомобиль).
2. Принцип действия инерционной машины заключается в следующем: на
задней или передней оси находится ряд шестерёнок, которые в свою
очередь соединяются с маховиком. Мы толкаем автомобиль, шестерёнки
придают движение маховику. Маховик же обладает большой массой, а
следовательно, будет долго сохранять состояние движения, которое ему
1.Явление инерции можно наблюдать на опытах:
- установим наклонно на столе доску. Внизу у доски положили брусок.
Поместим на наклонную доску грузовик с находящейся в нём куклой
и предоставим ему возможность скатываться вниз. В конце доски
грузовик остановится, а кукла, продолжая двигаться, упадёт.
Следовательно, движение тел сохраняется до тех пор, пока не встретят на
своём пути препятствие.
2. - подвесим массивный груз на такой нитке, которая может выдержать
Нагрузку, намного большую силы тяжести груза. Такую же нитку
прикрепим снизу груза. Если за нижнюю нитку дёрнуть рывком, то
она оборвётся; если же медленно тянуть за неё, постепенно увеличивая
усилие, оборвётся верхняя нитка.
1.Это объясняется тем, что когда нижнюю нить резко дёргают, то
время взаимодействия руки и нити настолько мало, что груз не
успевает изменить свою скорость и верхняя нитка не обрывается:
у груза велика инертность. В то же время у нижней нити, много
менее инертной, скорость изменяется на большее значение, и она
2.Составим столбик монет. Линейкой будем выбивать монеты из
столбика. Столбик не разваливается, так как монеты по инерции
сохраняют состояние покоя.
1.Все эти опыты помогают объяснить действие инерционных игрушек.
2. А теперь мы расскажем вам об очень интересной игрушке. Она
Называется «Птичка Хоттабыча».
1.«Птичка Хоттабыча» представляет собой стеклянную наглухо
запаянную фигурную ампулу (показать рисунок). Ампула наполнена
легко испаряющейся жидкостью. После смачивания водой ватного
чехла на голове «птички» начинается испарение, которое охлаждает
верхний шарик ампулы (голову «птички»).
2.Итак, вследствие охлаждения верхнего шарика (головы «птички»)
жидкость вытесняет из нижнего шарика превосходящим давлением
паров в нижней части игрушки. Голова «птички» становится тяжёлой,
«птичка» начинает наклоняться и занимает горизонтальное положение.
1.В этом положении происходит два независимых друг от друга
- «птичка» макает свой клюв в воду.
- происходит смещение паров нижнего и верхнего шариков, давление
уравнивается, и жидкость под действием собственного веса течёт в
нижний шарик. «Птичка» поднимается и снова располагается
Звуковые игрушки.
1.Мы живём в мире звуков. Где бы мы не находились, нас сопровождают
разные звуки. Вот, например, ещё совсем маленький ребёнок, а уже
гремит погремушкой. Это его первая игрушка, и она звуковая.
2.Посмотрите эту птичку (показывает игрушку). Если закрыть канал с
Одной стороны пальцем, а с другой стороны в него подуть. То звука не будет слышно. Если открыть отверстие и подуть в игрушку, то раздаются весёлые трели. Вы хотите узнать, почему поёт птичка?
1.Если по камертону ударить молоточком, то камертон зазвучит.
Поднесём к звучащему камертону маленький шарик, подвешенный
на нити. Ветви камертона будут периодически отталкивать шарик. Это
показывает, что ветви звучащего камертона колеблются. Как только
прекращаются колебания камертона – исчезает и звук. Следовательно,
источниками звука являются колеблющиеся тела.
2.В канале птички колебался воздух, а в этой игрушке, которая называется «водяной» соловей, будет колебаться вода. Её колебания
Тоже станут источниками звука.
1.Звуки бывают разной высоты (показывает свирель, свистит в неё).
Высота тона зависит от частоты колебаний.
2. Теперь посмотрим другие игрушки. (показывает игрушки, которые
при нажатии на неё, издают мелодию). Когда мы нажимаем на эти
игрушки, воздух выходит из игрушки, находящейся внутри игрушки,
а когда мы её отпускаем – устремляется внутрь игрушки, она постепенно
распрямляется, воздух внутри неё колеблется, издавая звук.
1.«Говорящие» куклы умеют произносить: «Мама» (показывает), медведи
могут рычать. Причина этого – колебания воздуха внутри кожаной
коробочки с отверстиями, которую помещают внутрь игрушки.
При наклоне куклы груз, находящийся в коробочке, падает, заставляя
воздух в ней сжиматься и выходить в отверстие. Колебания воздуха
2.Причиной музыкальных звуков, издаваемых шарманкой (показывает),
тоже являются колебания воздуха внутри неё. Чтобы звук был громче,
ящик шарманки делают большим и полым.
1. Вот посмотрите, как тихо звучит камертон, снятый с резонаторного
ящика. Если же поставить камертон на ящик, то его колебания через
стенки ящика передаются воздуху в нём. Вследствие этого воздух тоже
начинает колебаться и издавать звук. Если частоты колебаний камертона
и воздушного столба одинаковы, то происходит усиление звука –
2.Надеюсь теперь вам понятно, для чего у шарманки, гитары, пианино
делают резонаторные ящики. (показывают их).
1.На нашей выставке представлены и другие звуковые игрушки. Это
гармошка, поющие зверушки. (показывает и перечисляет их).
3. Мы познакомились только с некоторыми звуковыми игрушками.
Думаем, что теперь вы сумеете объяснить принцип действия любых
Игрушки, действие которых основано на различном положении центра тяжести.
1.Представим себе, что мы с вами в цирке. Идёт обычное цирковое
представление. Выступают акробаты, дрессировщики животных, ловко
подбрасывают мячи жонглёры. (показывает рисунки).
2.Очень интересное искусство – жонглирование. Правда, оно связано с
очень большим трудом. Но есть и особые секреты, не овладев
которыми трудно жонглировать. Эти секреты заключаются в законах
физики, без которых жонглёр не может быть находчивым и ловким.
Например, он должен знать, при каких условиях тело может
опрокинуться или изменить направление полёта.
1. Всё это знали и на фабрике детской игрушки. Посмотрите, какие
красивые неваляшки там сделали.
(звучит песня о кукле-неваляшке).
2.А чтобы понять, почему она никогда не падает, обратимся к физике.
Возьмём линейку и подвесим её на нитке так, чтобы нитка свободно
передвигалась. Будем менять положение петли, чтобы линейка пришла
в равновесие. В этом случае говорят, что линейка подвешена в центре
1. Центр тяжести есть у любого тела: у круга, треугольника,
Пятиугольника и т д (показывает фигуры на нитях).
2.А теперь рассмотрим, при каких условиях тела находятся в равновесии.
Для этого возьмём «этажерку» и проделаем опыт.
1. Будем положение этажерки менять и заметим, что если вертикаль,
проведённая из центра тяжести, пересекает площадь опоры, то
этажерка остаётся в равновесии. Устойчивое равновесие наблюдается
при самом низком положении центра тяжести.
2.Большой устойчивостью обладает тело, имеющее форму шарового
сегмента, лежащего на своей выпуклой поверхности. Такое тело
используется в устройстве распространённой игрушки – неваляшки.
При всяком наклоне игрушки её центр тяжести поднимается. (рисунок).
Это вызывает самостоятельное движение игрушки к исходному
положению устойчивого равновесия, при котором центр тяжести
1. Пожалуй, самыми «ловкими» являются балансирующие игрушки.
Эта курица стоит на любой опоре. За стержень с шарами она
закрепилась точно посередине, чтобы моменты сил, действующих
на стержень справа и слева были равны. Наклон курицы происходит
в том случае, когда мы опускаем балансир (показывает), понижающий
положение центра тяжести.
2.А вот какой умный ослик! Его движение связано с изменением центра
1. Вот эта кукла закрывает глаза, когда находится в горизонтальном
Центр тяжести – это только точка тела, но какое исключительно
Большое значение имеет она даже при изготовлении игрушек.
Электрические и магнитные игрушки.
1. Знакома ли вам кукла Наташа? (показывает куклу). Вот Наташа пошла
в школу, а вот она играет. Мы любим Наташу за то, что её можно так
быстро переодевать. А как устроена эта игрушка?
2.(На модели показывает). На груди у куклы закреплён магнит, а на все
её платья прикреплены металлические пластинки. Мы знаем свойства
магнита притягивать металлические тела. Вот у меня в руках
полосовой магнит. Когда я подношу его к металлическим предметам
гвоздику, например, то они притягиваются магнитом.
1. Это свойство используется в различных играх. (перечисляет их).
2. Теперь познакомимся с другим интересным явлением. Пропустим через проводник, помещённый в магнитном поле, электрический ток.
Проводник отклонится (опыт). Это свойство проводников с током двигаться в магнитном поле используется в электродвигателях. (показывает его).
1. в технических электродвигателях обмотка состоит из большого числа витков проволоки. Эти витки укладывают в пазы (прорези), сделанные вдоль боковой поверхности железного цилиндра. Этот цилиндр нужен для усиления магнитного поля. На рисунке изображена схема такого устройства, оно называется якорем двигателя. На схеме витки проволоки показаны кружочками.
2. Магнитное поле, в котором вращается якорь такого двигателя, создаётся сильным электромагнитом. Электромагнит питается током от того же источника тока, что и обмотка якоря. Вал двигателя, проходящий по центральной оси железного цилиндра, соединяют с прибором, который проводится двигателем во вращение.
1. Электрический двигатель является главной частью электрических игрушек. На выставке представлены такие игрушки – стиральная машина, микроволновая печь, пылесос. В них электродвигатели питаются от батареи.
2. В игрушке «микроволновая печь» начинает вращаться утка на тарелке после нажатия кнопки включения источника тока. В качестве источника используют батарейки. В результате поворота ручки цепь замыкают и тарелка начинает вращение.
1. Посмотрите на эту куклу. Она движется и поёт. ( демонстрирует игрушку). Это всё возможно осуществить с помощью маленького электрического двигателя.
2. На нашей выставке представлены и другие игрушки, действие которых объясняется существованием электрического тока. (показывает и называет их).
Игрушки, действие которых основано на использовании радиоволн.
1. В 1905 году было впервые продемонстрировано явление радиосвязи в городе Петербурге на курсах обучения курсантов нашим соотечественником Александром Степановичем Поповым. И вряд ли кто-нибудь из присутствующих там специалистов мог подумать, что не пройдёт и столетия, как любой ребёнок сможет управлять игрушкой, которая работает на принципе радиосвязи.
2. Я покажу вам сейчас несколько игрушек, которыми управляют радиоволнами. (демонстрирует и показывает их).
1. Практически каждый человек в нашей стране является пользователем сотового телефона или дома имеет радиотелефон. В устройстве и принципе работы этих аппаратов применяют радиоволны.
Второй ведущий:
Вы посмотрели выставку «Физика и детская игрушка». Мы очень надеемся, что она поможет соединить вам замечательный мир детства с миром науки, в который вы вступаете.
На прилавках современных магазинов трудно найти заводную игрушку отечественного производства. Да и вообще, согласитесь, этот тип игрушек не пользуется сейчас спросом. Большинство игрушек приводится в движение батарейками. Дети увлечены интерактивом, гаджетами. Разве им интересно наблюдать за однообразными движениями медведя, кушающего мед? Но несколько десятилетий назад такие игрушки казались верхом технического прогресса. Дети могли часами наблюдать за этими волшебными игрушками. Обладатель заводной игрушки чувствовал себя так же «круто», как нынешние дети с современным девайсом в кармане.
Заводные игрушки пользовались большой популярностью в Советском Союзе, и даже были увековечены в фильме «Приключения Электроника». Помните, главный герой в детском магазине чинит всевозможные игрушки и устраивает представление. Эту сцену сопровождает песня, которую начинает петь заводная игрушка-мартышка. С помощью двух чемоданов в руках, она передвигается и выполняет кульбиты. В наступающий год огненной обезьяны будет весьма кстати пересмотреть этот любимый всеми фильм.
Интернет оккупировали полчища сайтов, переполненных невзрачными (или ядовито раскрашенными) китайскими фигурками с хлипким механизмом. Тонкая пластмасса скрывает внутри пружинку, которую и заводным механизмом можно назвать с трудом. Заводные игрушки советского времени изготавливали по принципу прочности. Ранние экземпляры были железными, позже в игрушках использовалась толстая прочная пластмасса. И, надо сказать, ломались такие игрушки редко.
Железные фигурки заводных игрушек из СССР служили долго, их передавали из поколения в поколение. Петушки, цыплята, канареечки клевали зерно, после того как «волшебный ключик» их заводил. Коллекции таких действующих заводных игрушек 30-50-х годов сегодня бережно хранятся собирателями отечественных древностей.
Надо отметить, что сюжеты игрушек не отличались большим разнообразием. Плюшевый мишка с заводным механизмом бренчал на балалайке, зайчик ел свою морковку, слон стучал в барабан или тряс маленький бубен, собачки и кошечки виляли хвостиком, а некоторые и двигались. Отдельной линейкой можно выделить заводные игрушки для ванны: уточки, рыбки, киты и дельфинчики делали принятие водных процедур весёлым. Завод ключиком приводил в движение «мальчишечьи игрушки»: машинки, подъёмные краны, поезда и самолётики. У девочек середины 70-х была особая мечта – заводная кукла Маша. Она умела говорить «мама» и открывала и закрывала глазки.
Дети 70-х годов и старше, наверняка, помнят прелестную советскую заводную игрушку «Дюймовочку». Простая железная игрушка, которая заводилась ключом. После этого кувшинка раскрывалась и внутри показывалась сидящая Дюймовочка. Кувшинка крутилась вокруг куколки до тех пор, пока заряд заводной спирали не кончался, и игрушка снова закрывалась. Сама Дюймовочка двигалась и словно танцевала внутри.
Позднее, в 80-х годах, когда уже стала появляться разнообразная игрушечная продукция, о заводных игрушках в СССР стали забывать, так они постепенно практически «вымерли как класс».
У меня игрушек много –
От слона до носорога.
Но пока что ни одной
Нет игрушки заводной.
У меня полно игрушек –
Кукол, кубиков и пушек,
Барабанов и гармошек,
Ванек-встанек и матрёшек.
Но мечтаю о такой,
Чтобы ключ крутить рукой,
Чтоб пружинка пригодилась,
Чтоб игрушка заводилась –
И бежала по столу,
И кружилась на полу,
Или, выпрыгнув из рук,
Улетела в небо вдруг! (Михаил Пляцковский)
В работе рассматривается физические законы и явления и принцип работы некоторых детских игрушек.
Вложение | Размер |
---|---|
rabota_samsonova_milana.docx | 55.64 КБ |
Предварительный просмотр:
Всероссийская школьная конференция
учебно-исследовательских и проектных работ
«Мир науки и творчества»
ТЕМА: ФИЗИКА В ИГРУШКАХ
учащегося 4 «Е» класса
МОУ «Средняя общеобразовательная школа №55»
Васильева Елена Николаевна
«Первые шаги в науку» - физика
- Игрушки, действие которых основано на существовании архимедовой силы …………………………………………………
- Игрушки, действие которых основано на различном положении центра тяжести ……………………………………….
С самого рождения нас окружают игрушки, начиная с красочной звонкой погремушки. Позднее нам хочется общаться с другими игрушками. Наверное, каждый из нас задумывался хоть раз, как работает та или иная игрушка. Многие от любопытства даже разбирали их.
Актуальность данной темы состоит в том, что детство было у каждого и интерес к строению поющей, либо просто движущейся игрушки не уменьшается с возрастом. Когда ты сам еще маленький, ты не задумываешься над тем, почему все это работает: почему юла вращается, самолет летит, почему двигается робот… Я не раз замечал, наблюдая за игрой младшего брата, как он пытается разобрать игрушку, узнать, что внутри. Дети взрослеют, и меняются их взгляды на вещи. Их уже интересуют механизмы, находящиеся в игрушках.
Цель работы: рассмотреть применение физических явлений и законов в практической деятельности человека на примере создания детских игрушек.
Объект исследования - детские игрушки, которые помогают маленькому человеку познавать окружающий мир.
1. Классифицировать игрушки по принципу действия.
2. Объяснить принцип действия игрушек на основе законов физики.
3. Провести опыты, сделать выводы.
4. Провести исследование среди моих одноклассников.
5. Познакомить с принципом работы некоторых игрушек учащихся 4-х классов нашей школы.
Гипотеза: предположим, что в основе действия любой игрушки лежат физические законы.
Методы исследования: изучение источников информации (книги, статьи, сайты), наблюдение, эксперимент, сравнение, анализ.
- Основная часть
- Классификация игрушек
Игрушки во все исторические эпохи были связаны с игрой – ведущей деятельностью, в которой формируется типичный облик ребенка: ум, физические и нравственные качества. Игрушки помогали ребенку развиваться и учиться.
Почти все знакомые нам игрушки можно объединить в определённые группы на основе принципа их работы.
Погремушки, дудочки, бубен, барабан, пищащие игрушки, говорящие куклы
основано на существовании архимедовой силы и атмосферного давления
Надувные «спасательные» круги, кораблики, лодочки, резиновые (полые) игрушки - уточки, лягушки и т.д., водяные пистолеты
основано на различном положении центра тяжести
Кукла-неваляшка, кукла, с закрывающимися глазами, клоун на проволоке
Машины, зверюшки, железная дорога, заводная лодочка с гребцом
Электрическая железная дорога,
электрические автомобили, роботы, детский телефон, игра “Рыболов”, магнитные шашки и шахматы
- Игрушки, действие которых основано на законах оптики
Калейдоскоп, детские бинокли и подзорные трубы, детские фотоаппараты и камеры.
Я хочу рассказать об устройстве и действии некоторых из них.
1.2 Звуковые игрушки
Как большой сидит Андрюшка
На ковре перед крыльцом
У него в руках игрушка –
Погремушка с бубенцом.
Мальчик смотрит - что за чудо?
Мальчик очень удивлен,
Не поймет он: ну откуда
Раздается этот звон.
Самой первой игрушкой, которую ребенок берет в руки, является погремушка. Она относится к звуковым игрушкам. Что же такое звук? Звук – это колебания, которые распространяются в окружающей среде. Человек, воспринимает звуки, частота которых колеблется от 16 до 20 колебаний в секунду [4]. Внутри погремушки находятся шарики, бусинки, которые ударяясь о ее стенки, вызывают колебания. Эти колебания передаются окружающему воздуху и распространяются в нем. Звуки бывают разные: громкие и тихие, высокие и низкие. Чем чаще колеблется тело, тем выше звук.
Мы растем, и у нас появляются другие игрушки: бубны, различного рода свистульки, барабаны, свирели. Их принцип действия такой же, как и у погремушки.
Затем появляются «говорящие» куклы, но их устройство более сложное. Внутри игрушки находится кожаная коробочка с отверстиями. При наклоне куклы грузик, находящийся в коробочке, падает, заставляя воздух в ней сжиматься и выходить в отверстия. Колебания воздуха сопровождаются звуком.
1.3. Игрушки, действие которых основано на существовании архимедовой силы
Когда ребенок начинает ползать или ходить, он знакомится с другой простейшей игрушкой – мячом. Каждый малыш знает стихотворение А.Л. Барто:
Наша Таня громко плачет:
Уронила в речку мячик.
- Тише, Танечка не плачь:
Не утонет в речке мяч.
Так почему же мяч не тонет?
Оказывается, на него действует со стороны воды выталкивающая или архимедова сила (она была открыта древнегреческим ученым Архимедом). Если сила тяжести тела больше выталкивающей силы, то тело тонет. Если выталкивающая сила равна силе тяжести, то тело плавает. Если выталкивающая сила больше силы тяжести тела, то тело всплывает [1].
Выталкивающая сила зависит от объема тела.
Опыт 1. Прикрепим груз к пружине, пружина растянется. Опустим пружину с грузом в жидкость, пружина начнет сжиматься. Это происходит потому, что на груз со стороны воды действует выталкивающая или архимедова сила. В результате вес груза в жидкости уменьшается. Если к динамометру подвесить груз меньшего объёма, то длина пружины уменьшится на меньшую величину.
Так же она зависит от плотности жидкости.
Опыт 2. Опустим в сосуд с водой яйцо – оно тонет. Будем подсыпать в воду соль. По мере увеличения солёности воды яйцо всплывает. Таким образом, мы убедились, что выталкивающая сила зависит от объема тела и плотности жидкости.
На этом принципе основаны плавающие игрушки: кораблики, уточки, спасательные круги, жилеты, надувные матрасы.
К трем годам, у ребенка появляется интерес к различным механическим игрушкам. Самая простая из них – юла – древнейшая народная игрушка. Жжж-жи! Вот запустили волчок! Мы любуемся его кружением, удивляемся его устойчивости, и нам, конечно, хочется разгадать его тайну. Почему неподвижный волчок не может стоять на острие своей оси, а приведи его в быстрое движение – и, словно перед тобой совсем другой предмет, он стойко держится, вращаясь вокруг вертикальной оси? Мало того, волчок упорно сопротивляется попыткам вывести его из этого положения. Попытайтесь, толкнув его, вывести волчок из вертикального положения, опрокинуть, но волчок после толчка отскакивает в сторону и продолжает кружиться, описывая своей осью коническую поверхность.
В чем причина такой устойчивости вращения? Она тоже связана с одним из физических законов – законом сохранения момента количества движения. В этом и состоит секрет устойчивости волчка, а само это свойство сохранения устойчивости при вращении называют гироскопическим свойством. (Гироскоп – от греческого «гирос» - круг, кольцо и «скопео» - смотреть.) [4]
1. 5. Игрушки, действие которых основано на различном положении центра тяжести
У каждого тела есть центр тяжести. Центром тяжести каждого тела является некоторая расположенная внутри него точка - такая, что если за неё мысленно подвесить тело, то оно остается в покое и сохраняет первоначальное положение. Стоящий предмет не опрокидывается только тогда, когда отвесная линия, проведенная из центра тяжести, проходит внутри основания предмета [1].
Опыт 3. Этажерка стоит, так как отвесная линия, проведенная из центра тяжести, проходит через основание. Начнем наклонять этажерку, и пока отвесная линия будет проходить через основание, этажерка будет находиться в устойчивом положении. Как только отвесная линия выйдет за основание - этажерка упадет.
Часто для того, чтобы придать телу более устойчивое положение, центр тяжести смещают ближе к основанию.
Теперь рассмотрим, в каких положениях равновесия может находиться шар, центр тяжести которого находится в его центре.
Рассмотрим шар, лежащий на горизонтальной поверхности (рис.1).
Рис. 1. Шар в безразличном равновесии
На него действуют две силы – сила тяжести, направленная вниз и сила реакции опоры, направленная вверх. Эти силы равны по величине, направлены в противоположные стороны, уравновешивают друг друга. В этом случае, шар находится в состоянии безразличного равновесия [4].
Рассмотрим положение шара на вогнутой поверхности. Если шар находится в нижней точке, то на него также действуют две силы, и он находится в состоянии равновесия. Выведем шар из этого положения. На него опять действуют сила тяжести и сила реакции опоры, направленная под углом 90°. В результате возникает третья сила, возвращающая шар в положение равновесия. Такое положение называется устойчивым (рис. 2).
Рис. 2. Шарик в состоянии устойчивого равновесия
Если поместить тело на выпуклую поверхность и отклонить его на некоторый угол, на него также действует сила тяжести и сила реакции опоры,
но в результате сложения этих сил, возникает сила, уводящая тело от положения равновесия. Это равновесие называется неустойчивым (рис.3).
Рис. 3. Шарик, лежащий на выпуклой поверхности
Устройство и принцип работы неваляшки
Неваляшка появилась в России не так давно. Историки считают, что неваляшка пришла к нам из Японии. Эти завезённые в Россию куклы стали прообразом известной игрушки Ванька-встанька. Первые русские неваляшки, появившиеся на ярмарках в начале XIX века, назывались "кувырканами", они изображали купцов или клоунов. Такого Ваньку вытачивали на токарном станке из липы, в нижнюю часть вставляли свинцовый груз и раскрашивали яркими красками [3].
Неваляшка устроена так, что обладает положением устойчивого равновесия. Во-первых, центр тяжести ее смещен ближе к основанию, т.к. полый нижний шар заполняется чем-то тяжелым. Во-вторых, при выведении ее из положения равновесия, возникает сила, которая возвращает ее в устойчивое положение [4].
Я предложил своим одноклассникам ответить на вопросы анкеты (приложение). Было опрошено 27 человек. Результаты показаны на диаграммах.
Любимые детские игрушки
Если ты в детстве разбирал игрушки, то для чего ты это делал?
Из диаграммы видно, что самыми любимыми у моих одноклассников были плавающие игрушки. Большинство из опрошенных учеников разбирали в детстве игрушку, чтобы изучить ее внутреннее строение (11 чел.) или, чтобы понять принцип ее работы (11 чел.). Я не предполагал, что столько людей ещё в детстве интересовались этим. 3 человека злоупотребляли добротой своих родителей и ломали игрушки, чтобы получить новые в подарок. Некоторым ученикам (2 чел.) игрушки просто не нравились, и они не видели другого выхода, как сломать её.
В ходе проведенного исследования гипотеза подтвердилась. Нам удалось показать устройство игрушек, опираясь на физические законы и явления, практические опыты.
В практической части своей работы, проведя анкетирование одноклассников, мне удалось доказать, что дети с самого раннего детства проявляют любопытство и интерес к устройству и работе разных механизмов.
При выполнении этой исследовательской работы я узнал много нового, заинтересовался изучением физики и смог заинтересовать других ребят.
В дальнейшем, мне бы хотелось изучить принцип работы других детских игрушек и физические законы, лежащие в их основе, а так же принцип действия интерактивных игрушек, которые появляются в современном обществе.
Физика - это и удивительно простые опыты, показанные в кругу друзей, это игрушки - самоделки, которые вы можете сделать своими руками, это занимательные фокусы и интересные исследования того или иного физического явления. Физика помогает нам объяснить многие загадочные процессы, происходящие в природе. Ее открытия делают жизнь человека более комфортной и интересной.
Просмотр содержимого документа
«Физика в игрушках»
1. Инерционные игрушки
Про тело, которое при взаимодействии медленнее изменяет свою скорость, говорят, что оно более инертно и имеет большую массу. А про тело, которое при этом быстрее изменяет свою скорость, говорят, что оно менее инертно и имеет меньшую массу.
Движение по инерции лежит в основе принципа действия игрушек - автомобилей, мотоциклов: на задней или передней оси, соединяющей колёса, находится ряд шестерёнок, которые в свою очередь соединяются с маховиком, то есть массивным цилиндром. Мы толкаем автомобиль, шестерёнки передают движение маховику. Маховик же обладает большой массой, поэтому будет долго сохранять состояние движения, которое ему сообщили. Именно благодаря тяжелому маховику такую игрушку трудно остановить и она будет двигаться по инерции гораздо дольше времени, чем такая же игрушка без маховика.
Первые заводные и инерционные игрушки придумали еще в XIX веке, однако лишь в XX веке выбор таких игрушек стал максимально разнообразным это различные автомобили, тачки, скорые и милиция, Ваз, троллейбус, паровоз, мотоцикл. Сейчас, заводные игрушки не менее популярны, но выбор стал более широкий, появились различные животные: динозаврик, зайчик, овечка, змейка, слоник, кенгуру, цыпленок. В игрушки вставляют специальные пружины, которые позволяют игрушке двигаться. Несколько оборотов специального ключа или рычага, и вот уже словно по волшебству машинка ездит сама по себе, заяц прыгает как настоящий, рыбки плавают в воде. Машинки оборудуют специальным механизмом так, что при отводе назад, машинка по инерции едет вперед. Заводные и инерционные игрушки всегда привлекали внимание детей эффектом движения и своей яркой окраской. Они способны не только увлечь ребенка на долгое время, но и полезны для развития мелкой моторики, расширяют кругозор и наблюдательность. Если ребенок держит в руках «самодвижущуюся» игрушку, поверьте, он не останется равнодушным и придет в неимоверный восторг.
Инерционные игрушки.
Вы, ребята, смотрели сейчас заводные игрушки. А эти игрушки не требуют завода, но тоже некоторое время движутся, если мы поможем им и подействуем силой своей руки.
Эти инерционные игрушки помогла создать физика. Принцип действия инерционной машины заключается в следующем: на задней или передней оси находится ряд шестеренок, которые в свою очередь соединяются с маховиком. Мы толкаем автомобиль, шестеренки придают движение маховику. Маховик же обладает большой массой, и, следовательно, будет долго сохранять состояние движения, которое ему сообщили.
Явление инерции можно наблюдать на опытах:
2. Заводные игрушки
Внутри этих игрушек - пружина. Сжатая пружина обладает потенциальной энергией, за счет которой тело может совершать работу.
Когда мы заводим игрушку, поворачивая ключ, пружина внутри игрушки сжимается, увеличивается ее потенциальная энергия. Чем больше оборотов ключа мы сделаем, тем сильнее сожмем пружину, тем больший запас потенциальной энергии получит пружина. А теперь пора игрушку отпустить. Пружина внутри игрушки начинает раскручиваться, потенциальная энергия пружины превращается в кинетическую энергию игрушки. В основе работы этих игрушек лежит закон сохранения механической энергии.
3. Гироскопические игрушки
Это юла или волчок – древнейшая народная игрушка. Такие волчки приводят в движение рукояткой, снабжённой ходовым винтом.
Попытки повалить быстро вращающийся волчок не удаются Под действием толчка волчок лишь отскакивает в сторону и продолжает вращаться вокруг вертикальной оси.
В чем причина такой устойчивости вращения? Она тоже связана с одним из физических законов – законом сохранения момента количества движения. Попробуем установить волчок вертикально. Это нам не удаётся. Заставим волчок быстро вращаться, и он сразу становится устойчивым. Заметим, что волчок при этом описывает своей осью коническую поверхность. В этом и состоит секрет устойчивости волчка, а само это свойство сохранения устойчивости при вращении называют гироскопическим свойством.
Волчо́к, юла́ — детская игрушка, которая вращается и не падает.
Быстро вращающийся волчок не падает, но постепенно из-за трения угловая скорость собственного вращения уменьшается. Когда скорость вращения становится недостаточно большой, ось волчка спиралеобразно удаляется от вертикали, и волчок падает.
Волчок — это простейший пример гироскопа, являющегося важнейшим элементом целого ряда навигационных приборов.
Существует усложнённый вариант волчка, содержащий механизм, — юла.
Гироско́п (от др. -греч. γυρο «тяжёлый» и др. -греч. σκοπεω «смотреть» ) — устройство, способное измерять изменение углов ориентации связанного с ним тела относительно инерциальной системы координат.
.
Среди механических гироскопов выделяется ро́торный гироско́п — быстро-вращающееся твёрдое тело, ось вращения которого способна изменять ориентацию в пространстве. При этом скорость вращения гироскопа значительно превышает скорость поворота оси его вращения. Основное свойство такого гироскопа — способность сохранять в пространстве неизменное направление оси вращения при отсутствии воздействия на неё внешних сил.
Впервые это свойство использовал Фуко в 1852 г. для экспериментальной демонстрации вращения Земли. Именно благодаря этой демонстрации гироскоп и получил своё название от греческих слов «вращение» , «наблюдаю» .
Тромпо — популярная в Латинской Америке игрушка, волчок грушевидной формы, обычно изготавливаемый из древесины, хотя в последнее время для изгтовления тромпо нередко применяются пластмассы и иные современные материалы. Наконечник, на котором вращается тромпо, часто изготавливают из стали. Запускают игрушку обычно с помощью пружины. В Испании эта игрушка известна под названием пеон (peon), в ряде стран Южной Америки — как рунчо (runcho) или пеонца (peonza).
В ряде стран Латинской Америки, таких как Мексика, Колумбия и Перу, тромпо настолько популярен, что даже проводятся чемпионаты по его запуску.
Почему же не падает волчок? Почему, «устав» стоять на ножке, он отклоняет головку и начинает плавно вращать ею? Может быть, вращаясь, волчок оживает? Долгие годы люди размышляли над этим и терялись в догадках.
Первые упоминания о волчке и его необыкновенных свойствах относятся к глубокой древности. До наших дней дошли такие игрушки, изготовленные в Китае в III тыс. до н. э (см. статью "Древний Китай кратко").
В Историческом музее среди экспонатов, относящихся к началу нашей эры, есть волчки-рулетки. На их оси насажены не круглые, а многоугольные диски. На каждой грани диска написана цифра. Видимо, игра состояла в том, что, назначив ставки и объявив «свои» цифры, играющие запускали волчок. Через некоторое время, проходившее для игроков в волнующем ожидании, волчок останавливался и падал на одну из граней. Ставки забирал тот, чья цифра оказывалась на верхней грани лежащего волчка.
Шли столетия, но интерес к волчку и его загадкам не падал. Им интересовались продавцы игрушек, серьезные ученые, моряки и даже художники.
В Париже, в Лувре хранится картина «Мальчик с волчком», написанная в 1738 г. Ее автор Жан Батист Симеон Шарден — выдающийся французский живописец, академик, крупнейший представитель реалистической живописи XVIII в. На картине изображен мальчик лет двенадцати, наблюдающий за волчком, вращающимся на столе, на котором лежат книги и письменные принадлежности. Две детали картины привлекают внимание зрителя: это волчок со слегка отклоненной осью, движение которого ощущается почти физически, и лицо мальчика, не по-детски серьезное, напряженное; зрителю ясно — мальчик пытается сам постичь тайну волчка (ведь в книгах об этом еще почти ничего не написано).
Однако фундаментальные законы механики, которым, безусловно, подчиняется движение волчка, уже открыты великим Ньютоном. Задача теперь в том, как применить эти законы для понимания поведения волчка. Сам Ньютон сделал это блестяще, объяснив прецессию большого волчка — Земли, открытую еще во II в. до н. э. греческим астрономом Гиппархом. Но об этом позже.
Любопытны и многие другие встречающиеся в литературе упоминания о волчках. Вот лишь некоторые из них. Известный западногерманский ученый-механик К. Магнус писал: «Удивительный волчок, тысячи лет служивший занимательной игрушкой, очаровал в свое время и классиков механики. Астроном сэр Джон Гершель называл его инструментом философов».
В XVIII и XIX вв. волчки стали излюбленной моделью, к которой прибегали физики, стремясь объяснить те или иные явления. Даже Максвелл, создавая теорию электромагнитных явлений, прибегал к механическим моделям, большую роль в которых играли волчки, помещенные в различные точки пространства. Выдающийся физик первой половины XX в. Энрико Ферми (1901 — 1954) начал свой путь в науку, пытаясь постичь тайны волчков и гироскопов. Вот что писал о 13-летнем Энрико друг семьи Ферми инженер Амидей: «Впоследствии я узнал, что Энрико изучал математику и физику по случайным книгам, которые покупал в букинистических магазинах на рынке Камподей-Фьори. Он надеялся, в частности, найти в этих книгах теорию, объясняющую движение волчков и гироскопов. Объяснения он так и не нашел. Но, возвращаясь к этой проблеме снова и снова, мальчик самостоятельно приблизился к разъяснению природы загадочного движения волчка»
Американский инженер Эльмер Сперри уже имел ряд серьезных изобретений в области электротехники, когда в 1904 г. купил своим детям забавную игрушку — волчок. Неизвестно, понравилась ли игрушка детям, но папа увлекся ею, предугадав в использовании удивительных свойств волчка — устойчивости и прецессии — неограниченные возможности для творчества.
Изучив немногочисленные тогда труды по волчкам и гироскопам, Э. Сперри начал работать над актуальнейшей проблемой того времени — созданием для морского флота компаса без магнита (гироскопического компаса).
В 1908 г. Э. Сперри собственноручно изготовил образец гирокомпаса, который достаточно успешно прошел испытания. Успех окрылил изобретателя. В 1910 г. была создана фирма «Сперри», которая стала выпускать гирокомпасы для военных кораблей, а позднее другие гироскопические приборы и автопилоты.
Один из основоположников конструирования и производства отечественных гироскопических приборов Николай Николаевич Остряков (1904—1946) уже в раннем детстве был «очарован» волчком, который, по словам академика А. Ю. Ишлинского, «запускал без устали».
Гироскопические приборы, разработанные и изготовленные под руководством Н. Н. Острякова, помогали громить врага в годы Великой Отечественной войны.
В представлении на присвоение Н. Н. Острякову ученой степени доктора технических наук без защиты диссертации академик А. Н. Крылов отметил, что, подобно выдающимся механикам прошлого, Николай Николаевич «. осуществлял свои творения не пером на бумаге, а резцом из меди и стали».
Итак, гироскопическая техника началась с волчка, с его удивительных свойств, с которыми стоит познакомиться подробнее. Однако, чтобы понять эти свойства, нужно затратить некоторое время и усилия на подготовительную работу — знакомство с физическим смыслом самых необходимых для дальнейшего изложения понятий механики.
Волчок был и у скандинав и у викингов ,но и у славян тоже..представлял собой деревянный конус ..на который наматывалась нитка и раскручивалась юла. потом уже пошло дальше .
Предком современной юлы является волчок. Игра с волчком имеет давние традиции и восходит к средневековью. В те времена волчок запускали, раскручивая между ладонями, и бросали на ровную поверхность либо его раскручивали хлыстиком, и был он сделан только из дерева. Волчок всегда был детской забавой.
Первоначальная форма волчка – это деревянный конус, вращающийся на остром выступе, который подгоняли с помощью хлыстика. С 1880 года можно найти описание Лоренца Больца о производстве сделанных вручную волчков из цинка в королевском торговом реестре Баварии.
В 1970 г. Питер Больц встал во главе компании. Под его руководством был изобретён широко известный музыкальный волчок, и с тех пор начались его экспортные продажи по всему миру. Шесть-восемь вокальных элементов создают удивительные в несколько голосов звуки волчка.
Волчки от компании Bolz совершенствовались и в дальнейшем. К 1937 г. они постепенно увеличили своё звучание до 20 тонов. Так произошло создание хорового волчка.
В 1952 г. было запатентовано другое изобретение компании Bolz и в качестве третьего поколения волчков распространилось по всему миру. Музыка от вращающегося музыкального волчка. Тем временем компания Bolz превратилась в мирового ведущего производителя, а с появлением пластмассовых волчков завершилось производство традиционных оловянных волчков.
Цель моей работы – рассмотреть игрушки, работающие на основе физических явлений и выяснить в чем секрет действий этих игрушек.
- Изучить теорию действия игрушек.
- Создать “Музей физической игрушки”.
- Формировать интересы учащихся к исследовательской деятельности, расширить знания по основным вопросам курса физики, способствовать развитию творческих наклонностей учеников и практических умений при создании технических изделий
Просмотр содержимого документа
«Секреты физических игрушек »
Муниципальное учреждение дополнительного образования
Детский эколого-биологический центр г. Черемхово
«СЕКРЕТЫ ФИЗИЧЕСКИХ ИГРУШЕК»
Ефимова Татьяна.
Ученица 7 класса
Руководитель: педагог дополнительного образования
МУДО ДЭБЦ г. Черемхово
Дармаева Н.М.
Черемхово - 2014 г.
Цель моей работы – рассмотреть игрушки, работающие на основе физических явлений и выяснить в чем секрет действий этих игрушек.
- Изучить теорию действия игрушек.
- Создать “Музей физической игрушки”.
- Формировать интересы учащихся к исследовательской деятельности, расширить знания по основным вопросам курса физики, способствовать развитию творческих наклонностей учеников и практических умений при создании технических изделий
ИГРУШКИ ВОКРУГ НАС
Игрушки - известны с древних времен. И изготавливались из любых подручных материалов. В настоящее время в наших магазинах присутствует полное изобилие различных игрушек: пистолеты, грузовики, самолеты и подводные лодки, - все то, что движется, мигает, звучит. Меня заинтересовали игрушки имеющие физические основы в своем действии.
«Колыбель Ньютона »
Это игрушка, придуманная англичанином Саймоном Преббле в 1967 году, состоит из пяти металлических шариков, подвешенных на нитях. Действие игрушки основано на преобразований одной энергии в другую - кинетической в потенциальную, и наоборот. Если отклонить первый шарик и отпустить, то его энергия и импульс передадутся без изменения через три средних шарика последнему, который приобретёт ту же скорость и поднимется на ту же высоту. Он в свою очередь передаст свой импульс и энергию по цепочке снова первому шарику. Крайние маятники будут колебаться, а средние шарики будут покоиться. Если бы не было потерь механической энергии вследствие работы сил трения и упругости, то колебания продолжались бы вечно, но они затухают, т.к. в реальных механических системах всегда действуют силы сопротивления .
Йо-йо — древняя игрушка, состоящая из двух катушек соединенных осью, к которой прикреплена и намотана верёвка. Работает на принципе закона сохранения механической энергии - при броске, размотав целиком верёвку, начинает свой возврат по ней в руку играющего
Первое упоминание о ней было найдено еще в Греции 500 лет до н.э.!
Самая простая игрушка с резиновым мотором. Каталка приводиться в движении при помощи потенциальной энергии скрученной резины, которая высвобождается когда резина раскручивается. Скорость зависит от числа оборотов и жесткости резины.
Эта простая игрушка очень забавна. Можно мастерить сразу по нескольку таких “ползушек” и устраивали целые “танковые бои”.
Механические игрушки на равновесие
Эта категория игрушек основана на явлении устойчивого равновесия: если при отклонении тела от положения равновесия возникают силы, возвращающие его обратно, то такое равновесие называют устойчивым . Ванька-встанька возвращается всегда в вертикальное положение - значит, это есть положение его устойчивого равновесия. Для тела, находящегося в состоянии устойчивого равновесия, выполняется условие: центр тяжести тела занимает самое низкое возможное положение .
У Ваньки-встаньки в нижней части находится тяжёлый полушар. Центр тяжести полушара - точка С - при наклоне приподнимается. В самом деле, расстояние ВС больше расстояния АС. Значит, равновесие в первом случае устойчиво.
По принципу “неваляшки” изготовляют разные вещи: солонка и перечница для кухни, часы, чашка для малышей, шахматные фигуры.
Центр тяжести (центр масс) тела может находиться вне тела, если это тело имеет сложную форму. Центр тяжести орла находится ниже точки подвеса на одной вертикали с ней, занимая самое низкое положение. При отклонении от положения равновесия центр тяжести приподнимается, сила тяжести и сила реакции подвеса не уравновешиваются, равнодействующая этих сил (красная стрелочка) возвращает тело к положению равновесия. Значит, это равновесие будет устойчивым.
На аналогичном «секрете» работает пильщик. Пильщик будет стоять на ногах совершенно прямо. Легким толчком можно заставить его раскачиваться и он будет долго и равномерно покачиваться то вперед, то назад, совсем как настоящий пильщик.
Читайте также: