Как сделать электронную игрушку
Речь пойдёт о несложных схемах для «озвучивания» игрушек или других самостоятельных «поделок».Схемы простые, не содержат дорогих или дефицитных деталей, не требуют настроек/программирования и могут быть изготовлены с небольшими затратами время любым начинающим радиолюбителем.
1. Схема имитации звука подскакивающего металлического шарика
После подачи питания (замкнуть переключатель S1 ) по мере разрядки конденсатора С1 будет изменятся характер звука — громкость «ударов» начнёт снижаться, а паузы между ними уменьшаться. В заключение будет слышен характерный металлический дребезг, после чего звук прекратится.
Динамик может быть широкополосный, типа 1ГД-4 или любой аналогичный с возможно большей площадью диффузора (для большей натуральности звука). При налаживании добиваются наиболее характерного звука, для этого подбирают конденсатор С1 , который определяет общую продолжительность звучания, или С2 , от которого зависит длительность пауз между «ударами». Может понадобится и подбор транзистора VT1 , так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления.
2. Имитатор звука работающего мотора
Транзистор VT1 может быть типа КТ306, КТ3102 или аналогичный импортный маломощный. VT2 можно поставить помощнее, например КТ603, КТ814… Трансформатор любой малогабаритный, такие можно найти в транзисторных приёмников старых типов (без оконечных усилителей на микросхемах). При правильной сборке и исправных деталях налаживание не требуется. Резистором R1 можно изменять характер звука.
3. Мигающий фонарь
Фонарь-мигалку можно сделать по следующей схеме:
Транзисторы VT1 и VT2 могут быть любые кремниевые соответствующей структуры, с коэффициентом передачи тока не менее 50 . VT3 — мощный (зависит от мощности нагрузки-лампы), с возможно меньшим падением напряжения между эмиттером и коллектором.
Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.
Генератор трелей соловья
Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.
Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.
Электронный подражатель пения канарейки
Рис. 2. Схема электронного подражателя пения канарейки.
Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.
Имитатор кряканья утки
Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.
Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.
Рис. 3. Схема имитатора кряканья утки.
Генератор «шума дождя»
Рис. 4. Принципиальная схема генератора "шума дождя" на транзисторах.
Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.
Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.
Электронный барабан-приставка
Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50. 400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.
Рис. 5. Принципиальная схема электронного барабана.
Электронная скрипка с сенсорным управлением
Рис. 6. Схема электронной скрипки на транзисторах.
Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.
Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.
Электромузыкальный инструмент
Рис. 7. Схема простого самодельного электромузыкального инструмента.
Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.
Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.
К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.
Простая цветомузыка на светодиодах
Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).
Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.
В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.
Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.
Электронная игрушка "угадай цвет" на светодиодах
Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.
Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.
Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.
Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.
Рис. 9. Принципиальная схема электронной игрушки на светодиодах.
Электронная игрушка "у кого лучше реакция"
Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.
В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.
Рис. 10. Принципиальная схема игрушки "у кого лучше реакция".
Самодельный фототир
Рис. 11. Принципиальная схема фототира.
Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.
Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.
Время карантина, как, впрочем, и летних каникул – это повод уделить дополнительное время семье и детям. Часто возникает вопрос: чем можно заняться вместе с детьми? В статье мы расскажем, как разнообразить семейный досуг, создавая различные электронные самоделки своими руками. Вы не только прекрасно проведете время вместе с детьми, но и значительно расширите их кругозор.
Материалы для работы
№1. Зажигаем LED лампу от “Кроны”
Для того, чтобы зажечь лампочку от батарейки, вам понадобятся:
- повышающий трансформатор с 12 до 220 В;
- двигатель постоянного тока на 5 В;
- LED лампа на 220 В, 3 Вт;
- батарейка “Крона”;
- изолированные провода;
- паяльник.
Подпаиваем провода вторичной обмотки трансформатора к лампочке.
К первичной обмотке подпаиваем последовательно батарейку и двигатель, который можно взять от любой сломанной игрушки. Лампочка горит.
Двигатель постоянного тока при своей работе периодически замыкает и размыкает цепь. В результате этого в первичной обмотке трансформатора возникает переменное напряжение, которое трансформируется во вторичной обмотке, достаточное для загорания лампочки.
№ 2. Датчик движения
Для создания датчика, вам понадобятся:
- инфракрасный приемник;
- красный светодиод;
- фототранзистор на 500 люкс;
- зуммер;
- паяльник;
- изолированные провода;
- батарея питания на 4 В;
- универсальная плата.
Датчик будем собирать по следующей схеме на универсальной плате.
Подпаиваем все детали на универсальной плате.
Соблюдая полярность, подсоединяем проводами батарею питания.
При приближении к датчику какого-либо предмета, загорается светодиод и срабатывает зуммер.
№ 3. Индикатор уровня напряжения
Для создания индикатора, вам понадобятся:
- четыре светодиода на 1,5 В разного цвета;
- резисторы 580 Ом, 1 кОм (2 шт.), 2,2 кОм;
- изолированные провода;
- паяльник;
- универсальная плата.
Собирать индикатор будем на универсальной плате по следующей схеме.
Подпаиваем на плате все детали, соблюдая полярность светодиодов.
Подпаиваем провода от источника питания и подсоединяем мультиметр.
При последовательном увеличении напряжения видим срабатывание определенных светодиодов.
Примененные в схеме резисторы устанавливают порог срабатывания светодиодов: от минимального напряжения на первом – до максимального на последнем.
№ 4. Электрический генератор из старого динамика
Для создания генератора, вам понадобятся:
- динамик от старого музыкального центра;
- два электролитических конденсатора емкостью 4700 мкФ, 10 В;
- светодиод;
- резистор на 10 Ом;
- диод;
- паяльник;
- соединительные провода с крокодилами на одной стороне.
Спаиваем параллельно два конденсатора.
Подпаиваем через сопротивление светодиод.
С другой стороны подпаиваем диод.
Подсоединяем провода к диффузору и начинаем ритмично стучать по нему рукой. Через несколько секунд светодиод загорается.
При движении диффузора, генерируется напряжение, от которого заряжаются конденсаторы. После их зарядки загорается светодиод. Емкости конденсаторов достаточно для горения светодиода на протяжении двух минут без дополнительной подзарядки.
№ 5. Аккумуляторный ночник на солнечной батарее
Для создания ночника, вам понадобятся:
- солнечная панель JY 110х56 на 5 В;
- резисторы на 330 и 10 Ом;
- диод IN4007;
- аккумулятор 18650;
- изолированные провода;
- кусок пластиковой трубы
- клеевой пистолет;
- выключатель;
- кусачки;
- паяльник;
- светодиодный индикатор;
- светодиод мощностью 1 Вт;
- нож.
Ночник будем собирать по следующей схеме.
Немного обкусываем ножку резистора 330 Ом и припаиваем его к плюсу солнечной батареи.
К другому концу резистора, соблюдая полярность, припаиваем индикатор. Второй его конец припаиваем к отрицательному выходу солнечной панели.
Если повернуть панель к свету, светодиод сразу загорается, что свидетельствует о работе солнечной батареи.
Подсоединяем плюс солнечной панели к аноду диода. Катод диода подпаиваем проводом к плюсу аккумулятора.
Вторым проводом соединяем минусы солнечной панели и аккумулятора.
Подпаиваем к аккумулятору два провода на лампочку.
В пластиковой трубе вырезаем отверстие под выключатель, вставляем в нее аккумулятор, выводим провода и приклеиваем торец трубы к панели с помощью клеевого пистолета.
В крышке небольшой пластиковой бутылки паяльником проделываем отверстие.
Приклеиваем к ней светодиод. Подпаиваем к нему провода (один минусовой от аккумулятора – второй на выключатель) и изолируем клеем из пистолета.
Через сопротивление 10 Ом подсоединяем выключатель и вставляем его в трубу.
Закручиваем в пробку бутылку, наш ночник готов.
Днем аккумулятор будет заряжаться от солнечного света. Его заряда вполне хватит для ночного освещения вашей спальни.
В этой статье будет рассмотрена схема и пошаговая инструкция по изготовлению металлоискателя Volksturm S. Схема металлоискателя Volksturm S не очень сложная и если следовать рекомендациям, то вы соберёте своими руками отличный металлоискатель. Металлоискатель Volksturm S достаточно чувствительный и с его помощью можно легко обнаружить монету, на глубине 20 см, а крупные металлические предметы, на глубине до 80 см.
В этой статье будет рассмотрена схема и пошаговая инструкция по изготовлению индикатора разряда аккумулятора. Схема индикатора разряда аккумулятора достаточно проста и повторить её не составит труда. Если всё собрано согласно схеме, то устройство должно заработать сразу без каких либо настроек. Индикатор разряда будет полезен для различных приборов, что бы можно было следить за состоянием аккумулятора, тем более что схема универсальная!
В России и в странах СНГ, используется заземляющий принцип, когда нулевой проводник соединяется с заземляющим контуром. У многих людей может возникнуть «законный» вопрос: если они контактируют между собой, то для чего тянуть столько проводов – достаточно провести повсюду двойную жилу (фазу и нулевую линию) и будет возможность заземляться посредством нулевой жилы! Однако в такой постановке вопроса скрывается один технический нюанс, который превращает данное решение не только в бесполезную игрушку, но в некоторых случаях и в довольно опасную затею.
В том случае, если вы проживаете в городе, то вам совсем не обязательно иметь большую и громоздкую ТВ-антенну, тем более устанавливать ее на крышу и протягивать длинный кабель. Каналы цифрового телевидения стандарта DVB-T2 можно неплохо принимать и на комнатную, так как мощности передающих вышек вполне хватает для нормального приема. Сегодня вы узнаете как сделать миниатюрную домашнюю антенну для DVB-T2 по типу «Биквадрат» за 15 минут своими руками. Ее так же называю антенной Харченко. Этот мастер-класс спасёт вас от необходимости покупки дорогих китайских аналогов.
В этой статье вы узнаете как сделать усилитель на микросхеме TDA2003 своими руками. Достаточно простая схема усилителя на популярной микросхеме TDA2003, все детали доступны, собрать такой усилитель не составит труда, а наша пошаговая инструкция по сборке усилителя на микросхеме TDA2003 вам в этом поможет! На базе данного усилителя, можно собрать портативную колонку или сделать акустику для компьютера, в общем идей для творчества достаточно. ))
Некоторые автолюбителе устанавливают на заднее стекло дополнительный стоп сигнал, который, при нажатии на педаль тормоза, загорается вместе со штатными стопами. Вот и мне захотелось поставить такие же, что я и сделал, но мне не понравилось то, что они постоянно горят, начал я тогда искать схему мигающего стоп сигнала. Все схемы которые мне попадались, были или слишком сложные либо не рабочие.
Для изготовления приставки потребуется всего две детали, это температурный датчик LM35 и подстроечный резистор 10-100 кОм.
LM35 — это прецизионный интегральный датчик температуры с широким диапазоном измерения температур, высокой точностью, калиброванным выходом по напряжению. Датчик температуры LM35 способен измеряеть температуру в пределах от -55 до +150°C с коэффициентом 10 мВ/°C, питается напряжением 4–30 В, потребление тока менее 60 мкА. Этот датчик так-же используется в бортовом компьютере автомобиля «Мультитроникс» для измерения температур.
Сегодня вы узнаете как сделать простое устройство защиты аккумуляторов от разряда, оно способно работать на больших токах и его можно применить для самоделок с использованием аккумуляторов или установить её в автомобиль и оно будет отключать фары, если вы вдруг забыли их выключить.
Доброго времени суток! Если вы только познаете увлекательный мир радиоэлектроники, то советую обратить внимание на эту подборку из пяти схем для начинающего радиолюбителя! Схемы не сложные, поэтому собрать их не составит особого труда, в конце поста есть видео, в котором подробно рассказывается о каждой схеме, для чего нужна, принцип работы, а так же другая полезная информация. Надеюсь вам понравится!
Это схема коротковолновой радиостанции содержит в своем составе всего три транзистора. Самая простая рация для повторения начинающими радиолюбителями. Конструкция была взятая из старенького журнала, но актуальности своей ни капли не потеряла. Единственное, что устарело, так это радио компоненты, которые необходимо заменить на современные аналоги, в результате характеристики радиопереговорного устройства улучшатся.
Занимаясь недавно отладкой своей схемы, я обнаружил короткое замыкание слоя питания на землю. Миллиомметра или тестера с эквивалентными возможностями для поиска коротких замыканий у меня не было. Поэтому я вошел в Интернет, чтобы найти описание простого миллиомметра. Я нашел ответ в технической документации производителя, в который излагались основы
Во многих аудио, автомобильных и измерительных приложениях требуются недорогие, но высокостабильные и точные генераторы прямоугольных импульсов, способные отдавать в нагрузку достаточный ток. Интерес к дешевым способам реализации высококачественных приложений имеется всегда. Изображенная на Рисунке 1 схема состоит из бюджетного сдвоенного операционного усилителя (ОУ) с дополнительной функцией отключения и нескольких пассивных компонентов.
Блокировочные конденсаторы применяются в большинстве схем, но при плохих импульсных характеристиках эффект их использования может совсем не соответствовать ожидаемому. Очень немного статей, если таковые вообще существуют, затрагивают тему измерения импульсных характеристик блокировочных конденсаторов. На Рисунке 1 показана схема, предназначенная для таких измерений. Она в течение примерно 1 мс заряжает проверяемый
Во многих приложениях последовательность цепей преобразователя частоты состоит из буфера, желательно с некоторым дополнительным усилением по напряжению, смесителя, и элементов фильтрации. Вместо использования усилителя перед входом смесителя вы можете просто объединить функции смесителя и усилителя в одном приборе. В предлагаемой недорогой схеме используется усилитель, имеющий вход запрета. Когда прямоугольные импульсы гетеродина управляют выводом запрета, эти импульсы перемножается с входным сигналом, в результате чего происходит преобразование частоты.
Простая электронная светодиодная елочная игрушка на елку в форме сердечка из набора деталей. Хотите сделать необычную елочную игрушку на Новый Год? Такие игрушки не купить в магазине! Смотрите как сделать игрушку своими руками. Поделка может стать хорошей практикой по пайке начинающего радиолюбителя и сборке своей первой конструкции на радиодеталях по смешной цене.
Как сделать электронную светодиодную игрушку на елку своими руками
Для поделки был заказан на АлиЭкспресс электронный модуль для пайки за смешные деньги. Ссылка в конце блога. Электронный набор включает: печатную плату высокого качества, 6 резисторов, 18 светодиодов (мне досталось 19 шт), 3 транзистора, 3 электролитических конденсатора и принципиальная схема с руководством на китайском языке.
Электронная игрушка на елку
Принципиальная схема напечатана без ошибок, а неточность с указание типов транзистора исправляется маркировкой на печатной плате. Детали легко можно спаять маломощным паяльником. Ускоренный процесс сборки показан на видео. При сборке необходимо обратить внимание на следующие моменты:
-
Электролитические конденсаторы устанавливайте согласно полярности электродов. На корпусе каждого конденсатора обозначен отрицательный электрод.
Детали на плате
Пайка деталей электронного сердца
Структура и полярность светодиода
Длина электрода и полярность
Цветовая кодировка резисторов
После сборки необходимо очистить плату от остатков флюса и проверить правильность монтажа и качество пайки деталей.
Питается устройство напряжением 3 Вольта. Соблюдайте полярность подключения.
Набор в данной конфигурации не включал батарейный отсек. Отсек был добыт из детской игрушки. Отсек соединен с платой двумя проводниками.
Подаем питание выключателем на плате и проверяем работу. У меня схема кольцевого мильтивибратора заработала сразу. Как светятся светодиоды смотрите на видео.
Батарейный отсек при помощи термоклея закреплен на тыльной стороне платы. И к батарейному отсеку сверху приклеено ушко из проволоки для закрепления игрушки на ветвях новогодней елки. Включаем питание в канун Нового Года и ваша елочная игрушка гарантированно проработает до первого утра Нового Года!
Блок для батарей
Проводники соединения блока батарей и платы
Блок батарей приклеен к плате
Ушко подвеса игрушки на елку
Электронная игрушка на елке
Электронная игрушка на елке
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Читайте также: