Из коробки с елочными игрушками наугад берут одну
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Столичный центр образовательных технологий г. Москва
Получите квалификацию учитель математики за 2 месяца
от 3 170 руб. 1900 руб.
Количество часов 300 ч. / 600 ч.
Успеть записаться со скидкой
Форма обучения дистанционная
1. Вычислите: 37 – 29 + 159 − 86.
2. Вычислите:
3. В первый день турист прошёл три пятых всего пути, а во второй — оставшиеся 18 км. Сколько всего километров турист прошёл за два дня?
4. Вычислите: (5,4 − 8,1) : 0,6.
5. На рисунке изображён план комнаты. Ширина окна равна 180 см. Найдите, чему примерно равна ширина комнаты (на рисунке обозначена знаком вопроса). Ответ дайте в сантиметрах, округлите до десятков.
6. На диаграмме показаны объёмы производства зерна с 1 июля 2017 года по 30 июня 2018 года 10 крупнейших производителей зерна: девяти стран и Европейского союза (на диаграмме обозначен ЕС). Казахстан занимал 10 место. Определите по диаграмме, какое место по производству зерна занимал Китай.
7. Найдите значение выражения при x = −5.
8. На координатной прямой отмечены точки A, B и C.
Установите соответствие между точками и их координатами.
В таблице под каждой буквой укажите номер соответствующей координаты без пробелов, запятых или других дополнительных символов.
9. Вычислите: Запишите решение и ответ.
10. В коробке с ёлочными игрушками лежит 12 ёлочных шаров: 5 красных, 4 зелёных и 3 синих. Наугад из коробки достают несколько шаров. Выберите верные утверждения и запишите в ответе их номера.
1) Если достать 10 шаров, то среди них обязательно будут шары трёх разных цветов.
2) Если достать 9 шаров, то среди них обязательно будет шар красного цвета.
3) Если достать 5 шаров, то среди них обязательно будут 2 шара разного цвета.
4) Если достать 3 шара, то они обязательно будут трёх разных цветов.
11. Первое число составляет 85% второго числа, а третье — 20% второго числа. Найдите первое число, если известно, что оно больше третьего на 26.
12. Когда фигуру A повернули на 90° против часовой стрелки относительно точки О, получилась фигура В.
Нарисуйте фигуру, которая получится, если повренуть фигуру С на 90° против часовой стрелки относительно точки M.
13. Чтобы узнать, является ли число 1601 простым, его стали последовательно делить на 2, 3, 5 и т. д. На каком простом числе можно прекратить испытания?
1. Вычислите: 37 – 29 + 159 − 86.
37 – 29 + 159 − 86 = 81.
2. Вычислите:
3. В первый день турист прошёл три пятых всего пути, а во второй — оставшиеся 18 км. Сколько всего километров турист прошёл за два дня?
Пусть весь путь равен x. Составим уравнение, исходя из условия:
4. Вычислите: (5,4 − 8,1) : 0,6.
(5,4 − 8,1) : 0,6 = (−2,7) : 0,6 = −4,5.
5. На рисунке изображён план комнаты. Ширина окна равна 180 см. Найдите, чему примерно равна ширина комнаты (на рисунке обозначена знаком вопроса). Ответ дайте в сантиметрах, округлите до десятков.
Ширина комнаты примерно в 2 раза больше ширины окна. Таким образом, длина комнаты составляет от 330 до 410.
Ответ: от 330 до 410 сантиметров.
6. На диаграмме показаны объёмы производства зерна с 1 июля 2017 года по 30 июня 2018 года 10 крупнейших производителей зерна: девяти стран и Европейского союза (на диаграмме обозначен ЕС). Казахстан занимал 10 место. Определите по диаграмме, какое место по производству зерна занимал Китай.
Тип 18 № 630125
Есть четыре коробки: в первой коробке 101 камень, во второй — 102, в третьей — 103, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.
а) Могло ли в первой коробке оказаться 97 камней, во второй — 102, в третье — 103, а в четвёртой — 4?
б) Могло ли в четвёртой коробке оказаться 306 камней?
в) Какое наибольшее число камней могло оказаться в первой коробке?
а) да. Можно, например, сделать такие действия:
б) Если в одной коробке окажется 306 камней, то остальные будут пусты. Однако нетрудно видеть, что в коробках 1 и 2 количества камней каждый ход меняют четность, поэтому всегда остаются разной четности и не могут оба стать нулями.
в) Покажем, как получить в первой коробке 303 камня:
Больше сделать нельзя. Действительно, начальные количества камней давали разные остатки от деления на 4, и это свойство сохранится, поскольку от каждого количества вычитают 1, а потом к одному прибавляем 4. Значит, минимум камня не попадут в четвертую коробку, что дает оценку камня.
Ответ: а) да, б) нет, в) 303.
Заметим, что и в четвертой коробке можно получить максимум 303 камня: если проделать описанную в условии операцию 101 раз с первыми тремя коробками, то в четвертой окажется 303 камня. Большее количество получить нельзя, поскольку, как показано выше, разные остатки при делении на 4 являются инвариантом при перекладывании камней.
Критерии оценивания выполнения задания | Баллы |
---|---|
Получены верные обоснованные ответы в пунктах а, б и в | 4 |
Получены верные обоснованные ответы в пунктах а и в, либо получены верные обоснованные ответы в пунктах б и в | 3 |
Получен верный обоснованный ответ в пункте в, пункты а и б не решены, либо получены верные обоснованные ответы в пунктах а и б, пункт в не решен | 2 |
Получен верный обоснованный ответ в пункте а, либо получен верный обоснованный ответ в пункте б | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Максимальный балл | 4 |
Источник: ЕГЭ по математике 02.06.2022. Основная волна. Санкт-Петербург. Вариант 319, Задания 18 ЕГЭ–2022
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Столичный центр образовательных технологий г. Москва
Получите квалификацию учитель математики за 2 месяца
от 3 170 руб. 1900 руб.
Количество часов 300 ч. / 600 ч.
Успеть записаться со скидкой
Форма обучения дистанционная
Курс повышения квалификации
Реализация межпредметных связей при обучении математике в системе основного и среднего общего образования
Курс повышения квалификации
Применение возможностей MS Excel в профессиональной деятельности учителя математики
Курс повышения квалификации
Основы общей и педагогической психологии в деятельности педагога образовательного учреждения
«Особенности изучения математики с учащимися с ОВЗ»
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Описание презентации по отдельным слайдам:
Решение задач по комбинаторике, статистике и теории вероятностей
(подготовка к ОГЭ)
Муниципальное общеобразовательное учреждение
«Средняя общеобразовательная школа №13 г.Нижневартовск
1.
В урне лежат одинаковые шары : 5 белых, 3 красных и 2 зелёных. Саша вынимает один шар. Найдите вероятность того, что он окажется зелёным.
Ответ: 0,2
Решение:
Всего в урне лежит 5+3+2=10 шаров, из них 2 – зелёных. Вероятность того, что вынутый шар окажется зелёным, равна 2:10=0,2.
2.
На тарелке лежат одинаковые на вид блинчики: 3 с творогом, 5 с мясом и 4 с икрой и яйцами. Лена наугад выбирает один блинчик. Найдите вероятность того, что он окажется с творогом.
Ответ: 0,25
Решение:
Всего в тарелке лежит 3+5+4=12 блинчиков, из них 3 – с творогом. Вероятность того, что выбранный блинчик окажется с творогом, равна 3/12=1/4=0,25.
3.
В копилке находятся монеты достоинством 2 рубля – 14 штук, 5 рублей – 10 штук и 10 рублей – 6 штук. Какова вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей?
Ответ: 0,2
Решение:
Всего в копилке 14+10+6=30 монет, из них 6 штук – десятирублевых. Вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей, равна 6:30=1:5=0,2.
4.
В коробке находятся 7 красных шаров, 13 белых шаров и 6 голубых шаров. Определите вероятность того, что наудачу взятый из коробки шар окажется белым.
Ответ: 0,5
Решение:
Всего в коробке 7+13+6=26 шаров, из них13 – белых. Вероятность того, что наудачу взятый из коробки шар окажется белым, равна 13:26=1:2=0,5.
5.
Подбрасывают три монеты. Какова вероятность того, что все монеты упадут орлом вверх?
Ответ: 0,25
Решение:
Рассмотрим полную группу событий.
♦ первая монета упала орлом (о), вторая — решкой (р);
♦ обе монеты упали орлом;
♦ первая монета упала решкой, вторая — орлом;
♦ обе монеты упали решкой.
Мы перечислили все возможные исходы опыта, их всего – 4.
Нас интересуют те исходы опыта, когда обе монеты упали орлом. Такой случай всего один. Стало быть, N = 1.
Итак, вероятность выпадения двух орлов: Р = 1/4.
6.
Подбрасывают три монеты. Какова вероятность того, что ровно одна монета упадёт орлом вверх?
Ответ: 0,5
Решение:
Рассмотрим полную группу событий.
♦ первая монета упала орлом (о), вторая — решкой (р);
♦ обе монеты упали орлом;
♦ первая монета упала решкой, вторая — орлом;
♦ обе монеты упали решкой.
Мы перечислили все возможные исходы опыта, их всего – 4.
Нас интересуют те исходы опыта, когда одна их монет упала орлом. Вверх. Таких случаев два. Стало быть, N = 2.
Итак, вероятность выпадения «орла»:
Р = 2/4=1/2
7.
На полке стоят одинаковые на вид бутылки с прозрачной жидкостью: 4 бутылки с этиловым спиртом, 6 – с солевым раствором и 5 – с перекисью водорода. Василий наугад берёт с полки одну из бутылок. Найдите вероятность того, что с выбранной бутылке окажется солевой раствор.
Ответ: 0,4
Решение:
Всего на полке 4+6+5=15 бутылок с различными жидкостями, из них 6 – с солевым раствором. Вероятность того, что с выбранной бутылке окажется солевой раствор, равна 6:15=2:5=0,4.
8.
В пенале лежат несколько неотличающихся внешне друг от друга простых карандашей: 8 твёрдых, 12 мягких и 5 твёрдо-мягких. Марина наудачу выбирает один карандаш из пенала. Определите вероятность того, что выбранный карандаш будет твёрдым.
Ответ: 0,32
Решение:
Всего в пенале 8+12+5=25 карандашей, из них 8 – твёрдых. Вероятность того, что выбранный карандаш будет твёрдым, равна 8:25=0,32.
9.
Паша наудачу выбирает двузначное число. Найдите вероятность того, что оно оканчивается на 7.
Ответ: 0,1
Всего двузначных чисел – 90.
Двузначных чисел, оканчивающихся на 7: 17,27,37,47,57,67,77,87,97 – 9 чисел.
Вероятность того, что наугад выбранное двузначное число оканчивается на 7, равна: 9:90=0,1
Решение:
10.
На экзамене 45 билетов, Антон не успел выучить 18 из них. Найдите вероятность того, что ему попадётся выученный билет, если билет берётся наудачу.
Ответ: 0,6
Решение:
Всего 45 билетов. Антон выучил 45-18=27 билетов. Вероятность того, что ему попадётся выученный билет, 27:45=0,6 равна
12.
В полуфинале Кубка России играют четыре команды в матчах: «Спартак»(Москва) – ЦСКА(Москва), «Ростов»(Ростов-на-Дону) – «Алания»(Владикавказ). Какова вероятность для команды ЦСКА(Москва) выиграть Кубок России, если команды имеют равные шансы на победу?
Ответ: 0,25
13.
В шкафу стоят непрозрачные бутылки без надписей: 4 с соком, 3 с водой и 5 с лимонадом. Найдите вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом.
Ответ: 5/12
Решение:
Всего в шкафу 4+3+5=12 бутылок в жидкостью. 5 бутылок с лимонадом. Значит, вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом равна 5:12.
15.
При производстве 1200 электроприборов для машин марки «Лада» только 6 оказалось бракованными. Какова вероятность того, что на машину будет установлен бракованный электроприбор?
Ответ: 1/200
Решение:
Всего 1200 электроприборов. 6 – бракованных. Значит, вероятность того, что на машину будет установлен бракованный электроприбор, равна 6:1200=1:200.
16.
В мешке находятся 3 белых, 4 чёрных и 5 синих шариков. Наугад вынимается один шарик. Какова вероятность вынуть чёрный шарик?
Ответ: 1/3
Решение:
Всего в мешке 3+4+5=12 шариков, 4 из которых – чёрные. Вероятность вынуть чёрный шарик равна 4:12=1:3.
18.
В лотерее участвуют 40 тысяч жителей Москвы, 50 тысяч жителей Санкт-Петербурга и 30 тысяч жителей Волгограда. Один из участников выиграл суперприз. Определите вероятность того, что он живёт в Москве.
Ответ: 1/3
Решение:
Всего в лотерее приняло участие 40+50+30=120 тысяч жителей, из них 40 тысяч – москвичей. Вероятность того, что москвич выиграл суперприз равна 40:120=1:3.
19.
В соревнованиях по фигурному катанию участвуют пять пар из России, три пары из Канады, четыре из США и три из Китая. Найдите вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой.
Ответ: 0,2
Решение:
Всего в фигурном катании принимают участие 5+3+4+3=15 пар, из них - 3 пары из Канады. Вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой, равна 3:15=0,2
20.
На столе лежат 7 синих, 3 красных и 5 зелёных ручек. Найдите вероятность того, что наугад взятая ручка окажется красной.
Ответ: 0,2
Решение:
Всего на столе 7+3+5=15 ручек, из 3 – красных. Вероятность того, что наугад взятая ручка окажется красной, равна 3:15=0,2.
21.
В классе 30 человек. Для участия в субботнике случайным образом выбирают 12 учеников. Какова вероятность быть выбранным для участия в субботнике?
Ответ: 0,4
Решение:
Всего в классе 30 человек, в субботнике принимают участие – 12. Вероятность быть выбранным для участия в субботнике равна 12:30=4:10=2:5=0,4.
23.
В мешке находятся 2 чёрных и 3 белых шара. Наугад вытаскивают два шара. Какова вероятность того, что вытащенные шары будут одного цвета?
Ответ: 0,4
Решение:
Всего в мешке 5 шаров. Вероятность того, что вытащенные два шара будут одного цвета, равна 2:5=0,4.
24.
В пакете с леденцами 3 леденца с апельсиновым вкусом, 4 с лимонным и 5 с малиновым. Какова вероятность наудачу вытащить леденец с апельсиновым вкусом?
Ответ: 0,25
Решение:
Всего в пакете 3+4+5 =12 леденцов, из них 3 – с апельсиновым вкусом. Вероятность наудачу вытащить леденец с апельсиновым вкусом равна 3:12=1:4=0,25.
25.
В заключительном этапе велосипедной гонки участвуют равные по профессиональной квалификации спортсмены: 5 велосипедистов общества «Динамо», 4 велосипедиста общества «Буревестник», 6 велосипедистов общества «Зенит». Найдите вероятность того, что первым финиширует спортсмен общества «Зенит».
Ответ: 0,4
Решение:
Всего в велосипедной гонке участвуют 5+4+6=15 спортсменов. Из них 6 – велосипедистов общества «Зенит». Вероятность того, что первым финиширует спортсмен общества «Зенит», равна 6:15=2:5=0,4
26.
В корзине лежат 7 помидоров, 6 огурцов, 12 перцев. Найдите вероятность того, что первый наугад взятый овощ из корзины будет перцем.
Ответ: 0,48
Решение:
Всего в корзине 7+6+12=25 различных овощей, из них 12 – перцев. Вероятность того, что первый наугад взятый овощ из корзины будет перцем, равна 12:25=0,48.
27.
Из города А в город В можно добраться четырьмя разными способами, а из города В в город С можно добраться тремя способами. Сколькими способами можно добраться из города А в город С через город В?
Ответ: 12
Решение:
По правилу произведения получаем, что добраться из города А в город С через город В можно 4∙3=12 способами.
А
В
С
28.
Из города А в город В можно добраться поездом, самолётом и на автомобиле. Из города В в город С можно добраться только поездом и самолётом. Пассажир выбирает для себя транспорт случайным образом. Какова вероятность того, что этот пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом?
Ответ: 1/6
Решение:
А
В
С
По правилу произведения получаем, что добраться из города А в город С через город В можно 3∙2=6 способами. Вероятность того, что пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом, равна 1:6
В данной разработке представлены задачи для контрольной работы.
Также имеется разобранное решение к ним.
Просмотр содержимого документа
«Контрольная работа № 6»
1. На стол бросают два игральных тетраэдра (серый и белый), на гранях каждого из которых точками обозначены числа от 1 до 4. Сколько различных пар чисел может появиться на гранях этих тетраэдров, соприкасающихся с поверхностью стола?
2. В урне 4 белых и 8 черных шара. Из этой урны наудачу извлекли 6 шаров. Какова вероятность того, что 1 из них белые, а 5 черные?
3. На каждой карточке написана одна из букв к, л, м, н, о, п. Четыре карточки наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании получится слово «клоп»?
4. Найдите вероятность того, что случайным образом выбранное двузначное число при делении на 11 дает в остатке 10.
1. Из коробки, содержащей 10 мелков различных цветов, мальчик и девочка берут по два мелка. Сколько существует различных вариантов такого выбора четырех мелков?
2. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?
3. На каждой карточке написана одна из букв а, б, е, к, л, м, х. Четыре карточки наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании получится слово «хлеб»?
4. Найдите вероятность того, что случайным образом выбранное двузначное число при делении на 17 дает в остатке 2.
1. На стол бросают два игральных тетраэдра (серый и белый), на гранях каждого из которых точками обозначены числа от 1 до 4. Сколько различных пар чисел может появиться на гранях этих тетраэдров, соприкасающихся с поверхностью стола?
2. В урне 4 белых и 8 черных шара. Из этой урны наудачу извлекли 6 шаров. Какова вероятность того, что 1 из них белые, а 5 черные?
3. На каждой карточке написана одна из букв к, л, м, н, о, п. Четыре карточки наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании получится слово «клоп»?
4. Найдите вероятность того, что случайным образом выбранное двузначное число при делении на 11 дает в остатке 10.
1. Из коробки, содержащей 10 мелков различных цветов, мальчик и девочка берут по два мелка. Сколько существует различных вариантов такого выбора четырех мелков?
2. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?
3. На каждой карточке написана одна из букв а, б, е, к, л, м, х. Четыре карточки наугад выкладывают одну за другой в ряд. Какова вероятность, что при выкладывании получится слово «хлеб»?
4. Найдите вероятность того, что случайным образом выбранное двузначное число при делении на 17 дает в остатке 2.
Решение В а р и а н т а 1
1. Первый тетраэдр может лечь на стол одной из четырех своих граней; второй тетраэдр – также одной из четырех своих граней; всего 4 ∙ 4 = 16 различных пар граней (чисел).
2. Фиксируем цифру 5 на последнем месте, на остальные пять перед ней выбираем любые пять цифр из 9 оставшихся (с учетом порядка выбора).
Количество вариантов = 5 · 6 · 7 · 8 · 9 = 15120 чисел. Но мы знаем, что цифра 0 не может стоять на первом месте. Мы должны «отбросить» из этих чисел те, у которых 0 на первом месте (и 5 на последнем).
Таких чисел = 5 · 6 · 7 · 8 = 1680 чисел.
Значит, всего 15120 – 1680 = 13440 вариантов.
О т в е т: 13440.
3. Исходы – все возможные четверки людей, выбираемые из членов бригады; порядок выбора не учитывается, так как все билеты равнозначные.
Общее число исходов: = 35.
Событие А – «выбраны 2 мужчины и 2 женщины», m = =
= = 18 – количество благоприятных исходов;
.
О т в е т: .
4. Исходами опыта будут расположения выбранных карточек в определенном порядке, то есть размещения = 3 · 4 · 5 · 6 = 360 – общее число исходов.
Благоприятный исход – один (слово «клоп»).
Вероятность .
О т в е т: .
5. Общее число двузначных чисел п = 90.
Событие А – «случайным образом выбранное двузначное число при делении на 11 дает в остатке 10».
Количество благоприятных исходов т равно числу значений k, при которых число 11k + 10 – двузначное. Это будет при k = 0, 1, 2, 3, 4, 5, 6, 7, 8, то есть т = 9.
Искомая вероятность .
№ слайда 1
Муниципальное общеобразовательное учреждение«Средняя общеобразовательная школа №1 г.Суздаля» Работу выполнил ученик 9 класса Рубцов Егор
№ слайда 2
В урне лежат одинаковые шары : 5 белых, 3 красных и 2 зелёных. Саша вынимает один шар. Найдите вероятность того, что он окажется зелёным. Решение: Всего в урне лежит 5+3+2=10 шаров, из них 2 – зелёных. Вероятность того, что вынутый шар окажется зелёным, равна 2:10=0,2. Ответ: 0,2
№ слайда 3
На тарелке лежат одинаковые на вид блинчики: 3 с творогом, 5 с мясом и 4 с икрой и яйцами. Лена наугад выбирает один блинчик. Найдите вероятность того, что он окажется с творогом. Решение: Всего в тарелке лежит 3+5+4=12 блинчиков, из них 3 – с творогом. Вероятность того, что выбранный блинчик окажется с творогом, равна 3/12=1/4=0,25. Ответ: 0,25
№ слайда 4
В копилке находятся монеты достоинством 2 рубля – 14 штук, 5 рублей – 10 штук и 10 рублей – 6 штук. Какова вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей? Решение: Всего в копилке 14+10+6=30 монет, из них 6 штук – десятирублевых. Вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей, равна 6:30=1:5=0,2. Ответ: 0,2
№ слайда 5
В коробке находятся 7 красных шаров, 13 белых шаров и 6 голубых шаров. Определите вероятность того, что наудачу взятый из коробки шар окажется белым. Решение: Всего в коробке 7+13+6=26 шаров, из них13 – белых. Вероятность того, что наудачу взятый из коробки шар окажется белым, равна 13:26=1:2=0,5. Ответ: 0,5
№ слайда 6
Подбрасывают три монеты. Какова вероятность того, что все монеты упадут орлом вверх? Решение: Рассмотрим полную группу событий.♦ первая монета упала орлом (о), вторая — решкой (р);♦ обе монеты упали орлом;♦ первая монета упала решкой, вторая — орлом;♦ обе монеты упали решкой.Мы перечислили все возможные исходы опыта, их всего – 4.Нас интересуют те исходы опыта, когда обе монеты упали орлом. Такой случай всего один. Стало быть, N = 1.Итак, вероятность выпадения двух орлов: Р = 1/4.
№ слайда 7
Подбрасывают три монеты. Какова вероятность того, что ровно одна монета упадёт орлом вверх? Решение: Рассмотрим полную группу событий.♦ первая монета упала орлом (о), вторая — решкой (р);♦ обе монеты упали орлом;♦ первая монета упала решкой, вторая — орлом;♦ обе монеты упали решкой.Мы перечислили все возможные исходы опыта, их всего – 4.Нас интересуют те исходы опыта, когда одна их монет упала орлом. Вверх. Таких случаев два. Стало быть, N = 2.Итак, вероятность выпадения «орла»: Р = 2/4=1/2
№ слайда 8
На полке стоят одинаковые на вид бутылки с прозрачной жидкостью: 4 бутылки с этиловым спиртом, 6 – с солевым раствором и 5 – с перекисью водорода. Василий наугад берёт с полки одну из бутылок. Найдите вероятность того, что с выбранной бутылке окажется солевой раствор. Решение: Всего на полке 4+6+5=15 бутылок с различными жидкостями, из них 6 – с солевым раствором. Вероятность того, что с выбранной бутылке окажется солевой раствор, равна 6:15=2:5=0,4. Ответ: 0,4
№ слайда 9
В пенале лежат несколько неотличающихся внешне друг от друга простых карандашей: 8 твёрдых, 12 мягких и 5 твёрдо-мягких. Марина наудачу выбирает один карандаш из пенала. Определите вероятность того, что выбранный карандаш будет твёрдым. Решение: Всего в пенале 8+12+5=25 карандашей, из них 8 – твёрдых. Вероятность того, что выбранный карандаш будет твёрдым, равна 8:25=0,32. Ответ: 0,32
№ слайда 10
Паша наудачу выбирает двузначное число. Найдите вероятность того, что оно оканчивается на 7. Решение: Всего двузначных чисел – 90.Двузначных чисел, оканчивающихся на 7: 17,27,37,47,57,67,77,87,97 – 9 чисел.Вероятность того, что наугад выбранное двузначное число оканчивается на 7, равна: 9:90=0,1
№ слайда 11
На экзамене 45 билетов, Антон не успел выучить 18 из них. Найдите вероятность того, что ему попадётся выученный билет, если билет берётся наудачу. Решение: Всего 45 билетов. Антон выучил 45-18=27 билетов. Вероятность того, что ему попадётся выученный билет, 27:45=0,6 равна
№ слайда 12
№ слайда 13
В полуфинале Кубка России играют четыре команды в матчах: «Спартак»(Москва) – ЦСКА(Москва), «Ростов»(Ростов-на-Дону) – «Алания»(Владикавказ). Какова вероятность для команды ЦСКА(Москва) выиграть Кубок России, если команды имеют равные шансы на победу? Ответ: 0,25
№ слайда 14
В шкафу стоят непрозрачные бутылки без надписей: 4 с соком, 3 с водой и 5 с лимонадом. Найдите вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом. Решение: Всего в шкафу 4+3+5=12 бутылок в жидкостью. 5 бутылок с лимонадом. Значит, вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом равна 5:12. Ответ: 5/12
№ слайда 15
№ слайда 16
При производстве 1200 электроприборов для машин марки «Лада» только 6 оказалось бракованными. Какова вероятность того, что на машину будет установлен бракованный электроприбор? Решение: Всего 1200 электроприборов. 6 – бракованных. Значит, вероятность того, что на машину будет установлен бракованный электроприбор, равна 6:1200=1:200.
№ слайда 17
В мешке находятся 3 белых, 4 чёрных и 5 синих шариков. Наугад вынимается один шарик. Какова вероятность вынуть чёрный шарик? Решение: Всего в мешке 3+4+5=12 шариков, 4 из которых – чёрные. Вероятность вынуть чёрный шарик равна 4:12=1:3.
№ слайда 18
№ слайда 19
В лотерее участвуют 40 тысяч жителей Москвы, 50 тысяч жителей Санкт-Петербурга и 30 тысяч жителей Волгограда. Один из участников выиграл суперприз. Определите вероятность того, что он живёт в Москве. Решение: Всего в лотерее приняло участие 40+50+30=120 тысяч жителей, из них 40 тысяч – москвичей. Вероятность того, что москвич выиграл суперприз равна 40:120=1:3.
№ слайда 20
В соревнованиях по фигурному катанию участвуют пять пар из России, три пары из Канады, четыре из США и три из Китая. Найдите вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой. Решение: Всего в фигурном катании принимают участие 5+3+4+3=15 пар, из них - 3 пары из Канады. Вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой, равна 3:15=0,2
№ слайда 21
На столе лежат 7 синих, 3 красных и 5 зелёных ручек. Найдите вероятность того, что наугад взятая ручка окажется красной. Решение: Всего на столе 7+3+5=15 ручек, из 3 – красных. Вероятность того, что наугад взятая ручка окажется красной, равна 3:15=0,2. Ответ: 0,2
№ слайда 22
В классе 30 человек. Для участия в субботнике случайным образом выбирают 12 учеников. Какова вероятность быть выбранным для участия в субботнике? Решение: Всего в классе 30 человек, в субботнике принимают участие – 12. Вероятность быть выбранным для участия в субботнике равна 12:30=4:10=2:5=0,4. Ответ: 0,4
№ слайда 23
№ слайда 24
В мешке находятся 2 чёрных и 3 белых шара. Наугад вытаскивают два шара. Какова вероятность того, что вытащенные шары будут одного цвета? Решение: Всего в мешке 5 шаров. Вероятность того, что вытащенные два шара будут одного цвета, равна 2:5=0,4.Ответ: 0,4
№ слайда 25
В пакете с леденцами 3 леденца с апельсиновым вкусом, 4 с лимонным и 5 с малиновым. Какова вероятность наудачу вытащить леденец с апельсиновым вкусом? Решение:Всего в пакете 3+4+5 =12 леденцов, из них 3 – с апельсиновым вкусом. Вероятность наудачу вытащить леденец с апельсиновым вкусом равна 3:12=1:4=0,25. Ответ: 0,25
№ слайда 26
В заключительном этапе велосипедной гонки участвуют равные по профессиональной квалификации спортсмены: 5 велосипедистов общества «Динамо», 4 велосипедиста общества «Буревестник», 6 велосипедистов общества «Зенит». Найдите вероятность того, что первым финиширует спортсмен общества «Зенит». Решение: Всего в велосипедной гонке участвуют 5+4+6=15 спортсменов. Из них 6 – велосипедистов общества «Зенит». Вероятность того, что первым финиширует спортсмен общества «Зенит», равна 6:15=2:5=0,4 Ответ: 0,4
№ слайда 27
В корзине лежат 7 помидоров, 6 огурцов, 12 перцев. Найдите вероятность того, что первый наугад взятый овощ из корзины будет перцем. Решение: Всего в корзине 7+6+12=25 различных овощей, из них 12 – перцев. Вероятность того, что первый наугад взятый овощ из корзины будет перцем, равна 12:25=0,48.
№ слайда 28
Из города А в город В можно добраться четырьмя разными способами, а из города В в город С можно добраться тремя способами. Сколькими способами можно добраться из города А в город С через город В? Решение: По правилу произведения получаем, что добраться из города А в город С через город В можно 4∙3=12 способами. Ответ: 12
№ слайда 29
Из города А в город В можно добраться поездом, самолётом и на автомобиле. Из города В в город С можно добраться только поездом и самолётом. Пассажир выбирает для себя транспорт случайным образом. Какова вероятность того, что этот пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом?Решение: По правилу произведения получаем, что добраться из города А в город С через город В можно 3∙2=6 способами. Вероятность того, что пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом, равна 1:6
№ слайда 30
Читайте также: