Чем робот отличается от не робота верно ли что радиоуправляемые игрушки это настоящие роботы
Ссылка на первоисточник — здесь больше порядка с оформлением.
Содержание
Люди называют роботами те вещи, про которые неизвестно, что они делают полезного. Как только робот начинает делать что-то полезное, его перестают называть роботом [1].
Дмитрий Гришин, основатель инвестиционного фонда Grishin Robotics
Введение
Постоянно общаясь с разными людьми, я как человек, некоторым образом по образованию и по роду профессиональной деятельности имеющий отношение к робототехнике, неоднократно сталкивался с различными трактовками понятия «робот». Собрания специалистов в области робототехники иногда сопровождались беспощадными дискуссиями на эту тему. Дискуссии бывали столь же бесплодными в попытке прийти к единому, всеми признаваемому определению, сколь и малоосмысленными, с точки зрения неспециалиста. Какой смысл в словесной эквилибристике, думает обычный человек, если она никак не помогает в решении практических задач?
И действительно, какой смысл?
Независимо от того, какое наиточнейшее определение изобретут сами робототехники, люди все равно будут считать роботом любую рукотворную (искусственно созданную) сущность (механическое устройство или компьютерную программу), которая движется, выполняет работу, производит вычисления — в общем, функционирует — без непосредственного присутствия человека. При этом дистанционное управление люди вполне допускают.
Ситуацию запутывают и сами робототехники, то вводя новые термины для различения роботов от не-роботов (например, «робототехническая система», или «робототехническое устройство», которое, как бы, не совсем робот, «недоробот» из-за недостаточной автономности), то называя роботами устройства, которые, согласно их же определениям, роботами не являются [2].
Немного определений: стандарты по робототехнике
Но не будем голословными. Давайте посмотрим на некоторые определения. Возьмем для начала ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 [3], подготовленный крупными специалистами в данном вопросе — Государственным научным центром РФ ЦНИИ РТК, — цитирую, «на основе собственного перевода… международого стандарта ISO 8373:2012»:
робот (robot): Исполнительный механизм, программируемый по двум или более степеням подвижности, обладающий определенной степенью автономности и способный перемещаться во внешней среде с целью выполнения задач по назначению.
Пойдем по порядку. Итак, слова «исполнительный механизм» говорят нам о том, что робототехники признают роботами только некие механические агрегаты, оснащенные приводами. Этим робототехники отличаются от программистов, которые могут называть роботом или ботом
специальную программу, выполняющую автоматически и/или по заданному расписанию какие-либо действия через интерфейсы, предназначенные для людей [4].
В конце концов, вполне обычное дело, когда разные области знаний используют одни и те же слова для описания собственных смыслов. Пока просто запомним это разночтение.
Далее в ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 сказано про «определенную степень автономности», понимаемой как
способность выполнять задачи по назначению на основе текущего состояния и восприятия внешней среды без вмешательства человека [5].
Что ж, без вмешательства так без вмешательства, но зачем тогда называть роботами, например, вот это, и это, и это прекрасные устройства, демонстрируемые на сайте того же ЦНИИ РТК, работающие исключительно при дистанционном управлении человеком-оператором?
По той же причине не подходит под такое определение робота и робот «Фёдор», порадовавший нас в 2019 г. героическим полетом на МКС, поскольку он предназначен для работы под управлением человеком-оператором с помощью задающего устройства-экзоскелета в так называемом копирующем режиме.
Так все же, господа робототехники, роботы это или не роботы?
Кроме того, этакой несколько наивной формулировкой об «определенной степени автономности» разработчики стандарта как бы намекают на свою неспособность дать точное определение термину «робот». Что такое определенная степень автономности и кем она определена? Является ли признаком робота определенная полная автономность, или же определенная никакая — тоже? Впрочем, действительно, на этот вопрос однозначно не ответить, но, по крайней мере, отмечено стремление хоть к какой-нибудь автономности.
Далее имеем неточность в словах «способный перемещаться во внешней среде», так как перемещение представляет собой
Современный промышленный робот-манипулятор, который не изменяет своего местоположения в пространстве, но отвечает другим предъявленным требованиям (программируется по двум и более степеням подвижности и обладает определенной степенью автономности, особенно если, скажем, оснащен техническим зрением), должно быть, с удивлением узнает, что он роботом не является. Здесь была бы более точна формулировка из предшествующего ГОСТ Р ИСО 8373-2014 [7] от ООО «НИИ экономики связи и информатики «Интерэкомс», который как раз и был заменен обсуждаемым более свежим стандартом, а именно: «движущийся внутри своей рабочей среды».
Робот youBot от KUKA — манипулятор на мобильной платформе — способен перемещаться во внешней среде
Промышленные манипуляторы KUKA — неспособны перемещаться во внешней среде
Кстати, в англоязычном оригинале [8] это определение звучит так:
robot
actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks
Мне кажется, коллеги из НИИ экономики связи и информатики лучше разобрались в роботах, чем коллеги из ЦНИИ робототехники. Шутка (зато термин «степень подвижности» от ЦНИИ РТК более уместен, чем «ось» от «Интерэкомс»). Но и в целом, ГОСТ Р 60.0.0.4-2019/ИСО 8373:2012 грешит подобными неточностями (где в переводе, а где и в робототехнической терминологии).
Зато в нём же приведена сноска с еще одним, чуть менее противоречивым, определением робота:
ИСО/ТК 299 «Робототехника» в 2018 году принял новое определение: робот (robot): Программируемый исполнительный механизм с определенным уровнем автономности для выполнения перемещения, манипулирования или позиционирования [9].
Мы обсудили свежие стандарты по робототехнике. А ведь ещё есть и более ранние. Правда, они были выпущены в 1980-х гг. и уже настолько устарели, что вовсе не помогут нам в понимании, что же такое современный робот.
Что ж, будем считать, что со стандартами стало яснее. А вот с роботами — нет. Какая-то путаница.
Продолжение поиска: словари и мнения
Может быть, поискать альтернативные источники, которые сразу нам всё в корне разъяснят?
Если мы посмотрим на определения термина «робот» в различных словарях, то встретим что-то подобное:
РОБОТ (чеш. robot) — термин, употребленный впервые К. Чапеком в пьесе «R. U. R.» в 1920, которым часто обозначают машины с т. н. антропоморфным (человекоподобным) действием; обычно им придают внешнее сходство с человеком. Такие роботы, как правило, экспонаты технических выставок. В промышленном производстве и научных исследованиях применяют промышленные роботы — автоматические программно-управляемые манипуляторы, выполняющие рабочие операции со сложными пространственными перемещениями [10].
Робот
(чеш. robot, от robota — подневольный труд, rob — раб)
машина с антропоморфным (человекоподобным) поведением, которая частично или полностью выполняет функции человека (иногда животного) при взаимодействии с окружающим миром [11].
РОБОТ — стационарная или передвижная автоматическая машина (или дистанционно управляемый механизм), способная выполнять аналогично человеку двигательные (см. манипулятор) и управляющие функции и призванная заменить человека при выполнении тяжёлой, однообразной или опасной для его жизни и здоровья работы, а также при проведении её при недоступности объекта. Р. может быть запрограммирован на самообучение, выполнение различных видов сложных технологических операций при функционировании с различными моделями технологического оборудования и т.п. [12].
Робот (чеш. robot, от robota — «подневольный труд») — автоматическое устройство, предназначенное для осуществления различного рода механических операций, которое действует по заранее заложенной программе [13].
A robot is a machine — especially one programmable by a computer — capable of carrying out a complex series of actions automatically [14].
Обобщая, выделим те общие понятия, которыми, применительно к роботам, оперируют во всевозможных комбинациях приведенные цитаты:
- робот — это машина;
- антропоморфность, т.е. сходство с человеком — внешнее и/или по выполняемым действиям — с целью замены человека (или иногда и животного?);
- автономность: в диапазоне от полностью автоматического функционирования до всего лишь выполнения сложных последовательностей автоматических действий, а может быть, даже и до дистанционного управления (непосредственно вручную);
- уровень организации программного управления: от выполнения операций по чётко ограниченной заранее заложенной программе до возможности самообучения (а, там же ещё что-то говорилось и про ручное дистанционное управление);
- ещё вот: робот — это то, что придумано писателем Карелом Чапеком… Ой, пожалуй, это не надо.
Фрагмент спектакля по пьесе К. Чапека «R.U.R.» («Россумские универсальные роботы»)
М-да-а-а. Похоже, единственное, в чем полностью сходятся все определения, так это в том, что робот — это машина, т.е. «устройство, выполняющее механические движения с целью преобразования энергии, материалов или информации» [15].
Но подождите. Дадим слово представителю робототехников новой формации — Дмитрию Гришину, основателю инвестиционного фонда Grishin Robotics:
Вот так вот! Дмитрий максимально широко трактует понятие «робот» и относит к роботам и банкоматы, и автомобильные навигаторы, и даже «умные» часы и «умные» камеры! [17]
А если мы вспомним, что многие современные молодые люди, в массе своей больше знакомые с IT, чем с производством, повседневно называют роботами отдельный вид компьютерных программ.
… то, видимо, мы никогда не разберемся, что такое роботы!
Так что же такое робот?
Исходя из приведенных выше определений, если бы мы захотели чёткой однозначности понятий, мы могли бы пойти двумя путями:
- расширительное толкование: считать роботами вообще всё, что подходит хоть под какой-то из перечисленных признаков;
- ограничительное толкование: не признавать роботами вообще ничего, что не соответствует строго всем признакам.
В первом случае ситуация не сильно изменится, в сравнении с имеющимся положением дел. Всё равно сейчас робототехники, условно говоря, как хотят, так и называют свои и чужие разработки.
Во втором случае список известных нам роботов будет нещадно порезан. Роботами останутся считанные единицы. Например, такие, как робот Atlas от Boston Dynamics. По поводу него сомнений не возникает: это робот. Согласно любым определениям. Но таких будет о-о-очень мало. Даже большинство промышленных манипуляторов придется исключить. Так зачем же нам такая терминология «для избранных»?
Думаю, надо честно признать, что на данный момент мы не сможем придумать бесспорное, устраивающее всех определение понятия «робот», которому, к тому же, все будут неукоснительно следовать. Да оно и не нужно! Иначе, разговаривая с не подкованными теоретически людьми (заказчиками, коллегами, знакомыми), мы вынуждены будем постоянно их поправлять: «Нет, это не робот. А вот это, да, кажется робот… Если я не ошибаюсь… Подождите, проверю. » Это утомительно и отвлекает от других дел, полезных.
Итак, во-первых. На уровне обиходного использования вполне можно согласиться с приведенной в начале статьи интуитивной трактовкой неспециалистами понятия «робот» — рукотворной (искусственно созданной) сущности (механического устройства или компьютерной программы), которая движется, функционирует (выполняет работу, производит вычисления) без непосредственного присутствия человека.
Во-вторых. Для себя, мощных робототехников, нам будет полезно знать несколько типовых признаков, характеризующих (но не всегда определяющих) робот:
- приводной механизм — обязательный признак;
- программное управление — обязательный признак;
- выполнение поставленных человеком задач — обязательный признак;
- некоторая (большая или меньшая) автономность — а этот признак размыт даже в своей постановке и отражает, скорее, стремление к автономности.
И при этом мы помним, что в других областях могут быть собственные определения понятия «робот», такие как вот это, родившееся в мире информационных технологий. Виртуальный мир — он вообще склонен переносить понятия из реального мира к себе, одновременно дополняя их своими, новыми смыслами.
Вот так, например, выглядит голосовой бот Robovoice, по мнению его разработчиков
Ну, и в-третьих. Для буквоедов и заядлых классификаторов приведём определение робота на основе взятого из ГОСТ, только немного исправленное:
Робот — программируемый исполнительный механизм, обладающий некоторой степенью автономности и движущийся внутри своей рабочей среды с целью выполнения задач по назначению.
Вот так. Пусть каждому будет своё, и все будут довольны.
В заключение, в качестве юмора, обращаю внимание на цитату, взятую эпиграфом к данной статье. Не кажется ли вам, что она очень забавно и точно отражает реальность? Действительно, на заводах работают манипуляторы, квартиры убирают пылесосы, в небе летают беспилотники, в космосе — спутники, а на Луну, планеты и астероиды высаживаются зонды, межпланетные станции и планетоходы. Роботы, на самом деле, гораздо раньше заняли место в нашей жизни, чем мы это заметили! Даже если их не называют роботами, имеет ли это для них значение? Нет, они просто делают свою работу. Так что пожелаем всяческих успехов разработчикам стандартов в их трудном и важном деле формулирования точных определений. Для нас же важнее делать нашу работу.
Во все времена люди пытались представить себе будущее. Писатели-фантасты рассказывали об удивительных городах, машинах, летательных аппаратах и роботах. Подумайте, что такое робот. Что он может делать? Как использование роботов может изменить жизнь людей?
В современном мире использование роботов стало обыденным явлением. По квартирам ползают роботы-пылесосы. На автомобилях и самолётах автопилоты-роботы ведут управление по круиз-контролю. Готовят пищу роботы-хлебопечки и роботы-мультиварки.
Что такое робот? Какие роботы бывают? Как ими управлять и как создать робота самому? В какой момент наши добрые помощники — пылесос, автомобиль, кофеварка — так поумнели, что превратились из просто агрегатов в наших интеллектуальных друзей? Чем отличается робот от неробота?
Рассмотрим в качестве примера обычную радиоуправляемую машинку (рис. 10.17).
Она не является роботом, так как сможет поехать вперёд-назад и в сторону только после того, как на пульте нажмут рычажок в нужную сторону. Хотя команды движения и приходят на машинку по радиоканалу, но машинка не анализирует ситуацию и не принимает никаких решений.
Если рассмотреть управляемый с подобного пульта и тоже по радиоканалу квадрокоптер, то его можно считать полноценным роботом (рис. 10.18).
Это связано с тем, что на борту квадрокоптера стоит специальное устройство — чип-микропроцессор, в нём по заранее разработанной и загруженной в запоминающее устройство программе идёт анализ полученных команд, учитывается направление и скорость ветра, появление препятствия, рассчитываются изменения скорости вращения моторов.
Подумаем, когда становится роботом пылесос. Обычный включённый пылесос (рис. 10.19) будет долго шуметь, стоя на одном месте, если его никто никуда не передвинет. Но робот-пылесос в виде таблетки (рис. 10.20) сам передвигается от одной стены комнаты до другой, причём таким образом, что проходит над каждым участком пола не более чем 2—3 раза. Как это он делает? Откуда робот-пылесос берёт координаты и как запоминает свой путь?
Оказывается, что, как и в случае с квадрокоптером, в роботе-пылесосе есть специальные датчики. Они установлены на колёсах, и они называются энкодерами. Эти датчики собирают информацию о движении пылесоса относительно препятствий в комнате. Полученная таким образом информация обрабатывается специальным устройством — центральным процессором пылесоса, в который заложена программа анализа передвижения пылесоса. Робот ползёт и как будто мысленно «закрашивает» часть комнаты, где он уже побывал, а далее, уперевшись в стенку и развернувшись, он прокладывает маршрут по ещё «не закрашенному» пути. И так продолжается до тех пор, пока он не «закрасит» своим следом все свободное пространство либо пока не кончится заряд батареи на его борту.
Итак, робот — это такое устройство, которое способно действовать по заложенной в него программе.
В роботе, как и в любом компьютере, есть центральный процессор (чип), постоянная память и оперативная память. Центральный процессор — это «мозг» компьютера, устройство для обработки информации. Постоянная память, или постоянное запоминающее устройство (ПЗУ), используется для хранения неизменяемых данных в компьютере. Она способна хранить данные даже тогда, когда нет энергопитания компьютера. Оперативная память, или оперативное запоминающее устройство (ОЗУ), — это та часть компьютерной памяти, в которой во время работы компьютера хранится выполняемая программа и все данные, обрабатываемые процессором. ОЗУ — это энергозависимая часть компьютерной памяти.
Программу в робот загружают. Способы загрузки бывают разные, например с помощью специального устройства — программатора — или по радиоканалу. Загрузка программы в постоянную память устройства ещё называется прошивкой устройства.
Когда робот выключен, загруженная в него программа хранится в ПЗУ. Как только на робот подаётся питание, процессор отправляет программу из постоянной в оперативную память и запускает выполнение программы.
Таким образом, роботом называют такое устройство, которое можно запрограммировать на выполнение каких- то действий.
Является ли роботом старый автомобиль, например «Волга» ГАЗ-21 (рис. 10.21)? Конечно, каждый ответит, что нет.
Роботом можно считать современный гугл-автомобиль (рис. 10.22), на который уже установлен бортовой вычислительный комплекс и активный круиз-контроль. Такой автомобиль может не только сохранять постоянную скорость на трассе, но и оставлять неизменным расстояние до впереди идущего автомобиля и реагировать в автоматическом режиме на внезапно появляющееся препятствие.
Теперь мы можем определить, чем же отличаются роботы от простых механических устройств или радиоуправляемых игрушек. Итак, в роботах должно быть устройство, которое позволит ему «думать» и каким-то образом «общаться» с человеком. Такое устройство, которое используется для управления в электронике и вычислительной технике, получило название «контроллер». Контроллер — это микросхема, внутри которой находится настоящий компьютер (рис. 10.23). В контроллере есть всё, что необходимо для самостоятельной работы: процессор, оперативная и постоянная память, порты ввода и вывода, таймеры, многое другое.
Во все планшеты, телефоны и другие гаджеты встроены контроллеры. Контроллеры отличаются друг от друга размерами, мощностью (которая определяет, какое количество операций может выполняться), рабочей частотой (скоростью выполнения операций).
Главная часть любого контроллера — микропроцессор. Это арифметико-логическое устройство, которое производит арифметические и логические операции с двоичными числами (об этом мы будем говорить, когда станем рассматривать команды, которые понимают роботы).
Микропроцессоры отличаются друг от друга внешним видом (корпусом и количеством ножек) и функциональными возможностями. Один и тот же процессор может быть в корпусе, который нужно припаивать к плате, а может — в корпусе, который просто вставят в специальный разъём на плате (рис. 10.24). Процессор может выполнять различные задачи: например, управлять освещением у вас в комнате: по хлопку в ладоши включать свет, а по свистку выключать.
В следующем параграфе вы продолжите знакомиться с принципами работы роботов.
Основные понятия и термины:
робот, микропроцессор, постоянная память, оперативная память, контроллер.
Вопросы и задания:
1. Объясните, чем робот отличается от неробота. Верно ли, что радиоуправляемые игрушки — это настоящие роботы?
2. Какое устройство управляет всеми действиями робота? Для чего нужно большое количество разнообразных контроллеров?
Задание 1
Придумайте и нарисуйте собственного робота. Дайте роботу имя, придумайте, что он будет делать, какие команды он сможет выполнять.
Задание 2
Рассмотрите свой телефон, определите его марку. Найдите в Интернете, на базе какого микропроцессора он разработан.
Определите микропроцессоры, на базе которых разработаны телефоны ваших родителей, телефоны ближайших друзей. Заполните таблицу «Микропроцессоры телефонов».
§ 25. Робототехника. Системы автоматического управления
Во все времена люди пытались представить себе будущее. Писатели-фантасты рассказывали об удивительных городах, машинах, летательных аппаратах и роботах. Подумайте, что такое робот. Что он может делать? Как использование роботов может изменить жизнь людей? Что представляет себе человек, когда звучит слово «робот»?
В современном мире использование роботов стало обыденным явлением. По квартирам ползают роботы-пылесосы. На автомобилях и самолётах автопилоты-роботы ведут управление по круиз-контролю. Готовят пищу роботы-хлебопечки и роботы-мультиварки.
Что такое робот? Какие роботы бывают? Как ими управлять и как создать робота самому? В какой момент наши добрые помощники – пылесос, автомобиль, кофеварка – так поумнели, что превратились из просто агрегатов в наших интеллектуальных друзей? Чем отличается робот от неробота?
Рассмотрим в качестве примера обычную радиоуправляемую машинку (рис. 1). Она не является роботом, так как сможет поехать вперёд-назад и в сторону только после того, как на пульте нажмут рычажок в нужную сторону. Хотя команды движения и приходят на машинку по радиоканалу, но машинка не анализирует ситуацию и не принимает никаких решений.
Рис. 1. Радиоуправляемая машинка
Если рассмотреть управляемый с подобного пульта и тоже по радио каналу квадрокоптер, то его можно считать полноценным роботом (рис. 2). Это связано с тем, что на борту квадрокоптера стоит специальное устройство – чип-микропроцессор , в нём по заранее разработанной и за груженной в запоминающее устройство программе идёт анализ полученных команд, учитывается направление и скорость ветра, появление препятствия, рассчитываются изменения скорости вращения моторов.
Рис. 2. Радиоуправляемый квадрокоптер
Подумаем, когда становится роботом пылесос. Обычный включённый пылесос (рис. 3, а) будет долго шуметь, стоя на одном месте, если его никто никуда не передвинет. Но робот-пылесос в виде таблетки (рис. 3, б) сам передвигается от одной стены комнаты до другой, причём таким образом, что проходит над каждым участком пола не более чем 2 – 3 раза. Как это он делает? Откуда робот-пылесос берёт координаты и как запоминает свой путь?
Рис.3. Пылесос: а - обыкновенный; б - робот-пылесос
Оказывается, что, как и в случае с квадрокоптером, в роботе-пылесосе есть специальные датчики. Они установлены на колёсах, и они называются энкодерами. Эти датчики собирают информацию о движении пылесоса относительно препятствий в комнате. Полученная таким образом информация обрабатывается специальным устройством – центральным процессором пылесоса, в который заложена программа анализа передвижения пылесоса. Робот ползёт и как будто мысленно «закрашивает» часть комнаты, где он уже побывал, а далее, уперевшись в стенку и развернувшись, он прокладывает маршрут по ещё «не закрашенному» пути. И так продолжается до тех пор, пока он не «закрасит» своим следом все свободное пространство либо пока не кончится заряд батареи на его борту.
Итак, робот (чеш. robot, от robota – «подневольный труд») – это такое устройство, которое способно действовать по заложенной в него программе. Слово « робот » было придумано чешским писателем Карелом Чапеком и его братом Йозефом и впервые использовано в пьесе Чапека « Р. У. Р .» («Россумские универсальные роботы», 1920).
Вот как сам Карел Чапек это описывает: – «…в один прекрасный день … автору пришёл в голову сюжет … пьесы. И пока железо было горячо, он прибежал с новой идеей к своему брату Йозефу, художнику, который в это время стоял у мольберта… Автор изложил сюжет так коротко, как только мог…
– „Но я не знаю, – сказал автор, – как мне этих искусственных рабочих назвать. Я бы назвал их лаборжи [по-видимому, от английского слова labour – работники, трудящиеся, рабочая сила ], но мне кажется, что это слишком книжно“.
– „Так назови их роботами “, – пробормотал художник, … продолжая грунтовать холст …».
В ранних русских переводах использовалось слово « работарь ».
Назначения роботов могут быть самыми разнообразными, от увеселительных и прикладных и до сугубо производственных. Внешний вид роботов также может быть каким угодно, хотя нередко в конструкциях узлов заимствуют элементы анатомии различных живых существ, подходящие для выполняемой задачи.
Настоящий робот – это машина, которую можно обучить, т. е. подобно компьютеру запрограммировать (задать ему набор действий, которые он должен выполнять) делать разнообразные виды движений, реагировать на изменения в окружающем мире и выполнять множество видов работ и заданий.
Все роботы можно разделить на две большие группы:
• стационарные роботы на фундаменте, которые обычно используются в промышленности, на линиях сборки и сварки кузовных деталей автомобилей;
• мобильные роботы, которые могут перемещаться и выполнять работу везде, куда смогут добраться.
Мобильные роботы различаются по способу передвижения: есть передвигающиеся на колёсах или гусеницах, шагающие, плавающие и летающие.
Роботы могут выполнять различные функции.
Промышленные роботы – это, как правило, мощные роботы-манипуляторы, установленные на неподвижном фундаменте, они способны выполнять действия в радиусе, равном длине их «руки». На конвейере их ставят несколько в ряд, и каждый выполняет определённые операции (рис. 4).
Рис. 4. Сборочная линия с промышленными роботами
Медицинские роботы используются для выполнения хирургических операций, при этом применяются системы дистанционного слежения (рис. 5).
Рис. 5. Использование медицинских роботов в хирургии
К медицинским роботам относятся экзоскелеты, которые помогают людям передвигаться (рис. 6).
Рис. 6. Люди, использующие экзоскелеты
Роботы могут быть использованы в качестве протезов рук. Управлять электронными мышцами возможно уже сейчас, снимая датчиками сигналы с мышц человеческого тела. Наука, занимающаяся подобными проблемами, называется бионика.
Сельскохозяйственные роботы используются в растениеводстве и животноводстве (рис. 7). Они помогают кормить животных, удобрять и поливать растения, возделывать почву.
Рис. 7. Роботы, используемые в растениеводстве
Подводные роботы используются в морском деле для проведения аварийно-спасательных работ и различных исследований на дне моря (рис. 8).
Рис. 8. Подводный робот
Работа таких роботов осложняется тем, что ими невозможно управлять дистанционно, по радиоканалу. Радиоволны очень плохо распространяются в водной среде, поэтому таких автономных роботов надо заранее тщательно программировать, чтобы они смогли выполнить поставленную задачу и вернуться на базу самостоятельно.
Первым космическим роботом можно считать луноход, отправленный на Луну ещё во времена СССР — в далёком 1970 году (рис. 9)
Рис. 9. Советский луноход
В 2011 году американцами к Марсу был направлен робот «Кьюриосити» (рис. 10), название которого переводится на русский язык как «любознательность». Для него была разработана специальная платформа на реактивных двигателях, которая, подлетев к поверхности Марса, «зависла» над ней, и марсоход очень бережно на лебёдке сам спустился с неё на поверхность.
Рис. 10. Американский марсоход «Кьюриосити»
Робот был отправлен и к комете Чурюмова — Герасименко. Он проводил исследования поверхности в точке высадки, брал пробы грунта и анализировал их прямо на месте, передавая на Землю в цифровом виде данные о составе почвы и поверхности, на которой он работал.
Сервисные роботы помогают нам в повседневной жизни. К ним, например, относится робот-пылесос. В местах большого скопления людей используют роботы телеприсутствия (рис. 11), которые помогают сориентироваться, подсказывают, куда сейчас стоит сходить, и отвечают на вопросы посетителей.
Рис. 11. Робот телеприсутствия
В школе такие роботы телеприсутствия помогут ребятам, которые не пришли в школу, почувствовать себя в коллективе, побродить на переменке по коридорам, пообщаться с друзьями, получить задания на дом или пойти с одноклассниками в музей (рис. 12).
Рис. 12. Робот в музее
Самым известным шагающим сервисным роботом является японский робот Асимо (рис. 13). Такие роботы уже используются в некоторых кафе как разносчики заказанной еды.
Рис. 13. Японский робот Асимо
К сервисным роботам можно отнести систему круиз-контроля в автомобилях. Причём если раньше такие системы только поддерживали определённую скорость при движении по трассе, то сейчас появились значительно более умные системы круиз-контроля, которые определяют ещё и расстояние до идущего впереди автомобиля и позволяют двигаться со скоростью, задаваемой лидером в колонне.
В роботе, как и в любом компьютере, есть центральный процессор (чип), постоянная память и оперативная память. Центральный процессор – это «мозг» компьютера, устройство для обработки информации. Постоянная память, или постоянное запоминающее устройство (ПЗУ) , используется для хранения неизменяемых данных в компьютере. Она способна хранить данные даже тогда, когда нет энергопитания компьютера. Оперативная память, или оперативное запоминающее устройство (ОЗУ ), – это та часть компьютерной памяти, в которой во время работы компьютера хранится выполняемая программа и все данные, обрабатываемые процессором. ОЗУ – это энергозависимая часть компьютерной памяти.
Программу в робот загружают. Способы загрузки бывают разные, например с помощью специального устройства – программатора – или по радиоканалу. Загрузка программы в постоянную память устройства ещё называется прошивкой устройства.
Когда робот выключен, загруженная в него программа хранится в ПЗУ. Как только на робот подаётся питание, процессор отправляет программу из постоянной в оперативную память и запускает выполнение программы.
Таким образом, роботом называют такое устройство, которое можно запрограммировать на выполнение каких-то действий.
Роботом можно считать современный гугл-автомобиль , на который уже установлен бортовой вычислительный комплекс и активный круиз-контроль. Такой автомобиль может не только сохранять постоянную скорость на трассе, но и оставлять неизменным расстояние до впереди идущего автомобиля и реагировать в автоматическом режиме на внезапно появляющееся препятствие.
Теперь мы можем определить, чем же отличаются роботы от простых механических устройств или радиоуправляемых игрушек. Итак, в роботах должно быть устройство, которое позволит ему «думать» и каким-то образом «общаться» с человеком. Такое устройство, которое используется для управления в электронике и вычислительной технике, получило название «контроллер». Контроллер – это микросхема, внутри которой находится настоящий компьютер (рис. 14). В контроллере есть всё, что необходимо для самостоятельной работы: процессор, оперативная и постоянная память, порты ввода и вывода, таймеры, многое другое.
Рис. 14. Контроллер
Во все планшеты, телефоны и другие гаджеты встроены контроллеры. Контроллеры отличаются друг от друга размерами, мощностью (которая определяет, какое количество операций может выполняться), рабочей частотой (скоростью выполнения операций).
Главная часть любого контроллера – микропроцессор.
Рис. 15. Микропроцессоры
Это арифметико-логическое устройство, которое производит арифметические и логические операции с двоичными числами (об этом мы будем говорить, когда станем рассматривать команды, которые понимают роботы).
Электроника в робототехнике
Приведите примеры электронных устройств, которыми вы пользуетесь в школе и дома. Как вы думаете, нужна ли для их работы электрическая энергия? Обоснуйте свой ответ.
Рассмотрим самую главную часть любого робота – контроллер.
В качестве индикаторного устройства в современных устройствах часто применяются светодиоды. Светодиод – это электронный прибор, который начинает светиться при прохождении через него электрического тока. Светодиод излучает свет, когда ток протекает от анода, который обозначен знаком «+» (это длинный вывод светодиода), к катоду, который обозначен знаком «–» (короткий вывод). Светодиод обязательно нужно подключать к источнику питания с соблюдением полярности, т. е. «+» светодиода – к «+» источника тока, а «–» светодиода – к «–» источника тока. Раньше светодиоды выпускали только красного и зелёного цветов, затем придумали, как изготавливать светодиоды жёлтого цвета. Но только когда японец Судзи Накамура изобрёл синий светодиод, стало возможно добиться свечения любым цветом.
Основной частью контроллера является микропроцессор . Приставка микро, как вы знаете, означает «маленький».
Рис. 16. Принципиальная схема простейшего процессора
Сейчас процессор такой маленький, что даже в керамическом корпусе имеет размер, сравнимый с размером рисового зёрнышка, несмотря на то, что он состоит из огромного количества электронных компонентов. Принципиальная схема простейшего процессора имеет приблизительно такой вид, как показано на рисунке 16, а он умещается на кончике пальца (рис. 17).
Рис. 17. Микропроцессор и рисовое зернышко
Но процессоры не всегда были маленьких размеров.
Раньше вычислительные машины, выполняющие такие же операции, как микропроцессор, были огромного размера и занимали целый зал (рис. 18).
Рис. 18. Вычислительная машина второй половины XX в.
Основные понятия и термины:
роботы: стационарные, мобильные, промышленные, медицинские, подводные, сельскохозяйственные, космические, сервисные, шагающие, круиз-контроль; микропроцессор, постоянная память, оперативная память, контроллер.
? Вопросы и задания
1. Объясните, чем робот отличается от неробота. Верно ли, что радиоуправляемые игрушки – это настоящие роботы?
2. Какое устройство управляет всеми действиями робота? Для чего нужно большое количество разнообразных контроллеров?
3. Какую систему классификации вы можете предложить для роботов?
4. Каких роботов целесообразно использовать для работы на конвейере автомобильного предприятия (шагающих, стационарных, мобильных)?
5. Какими должны быть подводные роботы: программно управляемыми (автономными) или дистанционно управляемыми? Почему?
6. Что можно считать первым космическим роботом? Какие ещё космические роботы вам известны?
Придумайте и нарисуйте собственного робота. Дайте роботу имя, придумайте, что он будет делать, какие команды он сможет выполнять.
Роботы – это автоматизированные машины, которые способны выполнять функции человека при взаимодействии с окружающим миром. О них люди мечтали еще с древних времен, и вот сейчас эти механизмы входят в наше общество с огромной скоростью. Основное их предназначение – сделать нашу жизнь более комфортной, улучшить условия труда, освободить «руки» от сложных рабочих процессов и увеличить производительность.
Роботы чаще всего встречаются в промышленности, где с их помощью удалось полностью автоматизировать большинство производственных задач. Но, кроме того, умные машины все больше задействуются в военной отрасли, медицине, сфере обслуживания и потребительском секторе.
И если ранее они выполняли только повторяющиеся рутинные задачи по программе, то сейчас их уровень достиг новых вершин, позволяя взаимодействовать с нами, общаясь на своем машинном языке, понимать наши жесты и эмоции. Кроме того, используя специализированные площадки уже сейчас каждый желающий имеет возможность влиять на индустрию, создавать свои программы и добавлять новые функции к роботам. Таким образом, развиваясь от простых вспомогательных механизмов, роботы имеют все шансы влиться в наше общество и стать нашими друзьями.
История развития
Отметим несколько интересных фактов из истории развития роботов. Первые признаки робототехники наблюдались еще с античности, когда люди мечтали о гигантских бронзовых машинах, которые смогли бы помочь им сражаться с врагами и завоевывать новые земли. Есть свидетельства, что прообразами нынешних роботов были механические фигуры, найденные в записках арабского изобретателя Аль-Джазари примерно в 1136 – 1206 годах.
Первым, кто представил чертеж человекоподобного робота, был великий Леонардо да Винчи примерно в 1495 году. Чертеж представлял модель механического рыцаря, который может сидеть, стоять, двигать руками, головой и, возможно, захватывать предметы. Но так и неизвестно, пытался ли да Винчи воплотить в реальность этот механизм.
В 16-17 веке в Западной Европе инженеры начали конструировать автоматоны — заводные механизмы наподобие человека, которые могли выполнять довольно сложные действия. Самый известный из них – робот «испанский монах», который был изобретен примерно в 1560 году механиком Хуанело Турриано для императора Карла V. Автоматон был около 40 см в высоту, способный ходить, бить себя в грудь рукой, кивать головой и даже преподносить деревянный крест к губам.
Более заметный прогресс в робототехнике наблюдался в 18 веке. К примеру, в 1738 году французский инженер Жак де Вокансон собрал первого в мире андроида, способного играть на флейте.
С 19 века изобретения стали приобретать более практический смысл. В 1898 году известный физик Никола Тесла представил общественности миниатюрное радиоуправляемое судно. Первоначально это изобретение казалось немного причудливым. Но в дальнейшем его идеи стали воплощаться в жизнь и приобрели широкое применение.
1921 год – механизмы, наконец, обрели четкий термин «робот» благодаря чешскому писателю Карлу Чапеку и его пьесе под названием «Россумские Универсальные Роботы». Примечательно, что Чапек назвал этим словом не машины, а живых людей, создаваемых на специальной фабрике. Но термин закрепился в науке и дал жизнь всем автоматизированным устройствам.
В середине 20 века, в частности, в 1950-ых стали разрабатываться механические манипуляторы для взаимодействия с радиоактивными материалами. Эти роботы копировали движения рук человека, находящегося в безопасном месте.
В 1968 году японской компанией Kawasaki Heavy Industries, Ltd был произведен первый промышленный робот. С тех пор Япония начала вовсю стремиться стать мировой столицей робототехники, и ей это удалось. Несмотря на то, что роботы изначально разрабатывались в США, они импортировались в Японию в малых количествах, где инженеры изучали их и применяли в производстве.
Коммерческое распространение роботов началось с 1980-ых годов. Технический прогресс двигался в направлении совершенствования систем управления. Такие компании как Unimate, Hitachi KUKA, Westinghouse, FANUC развивали системы датчиков для своих роботов, делая их более чувствительными к задачам, которые они выполняют.
В конце 90-ых – начале 2000-ых начался активный рост и развитие отрасли с использованием новых контроллеров, языков программирования, запуска первых роботов в космос и возникновением машин, создающих роботов.
В это время также появились новые человекоподобные роботы, такие как канадский Aiko, имитирующий человеческие чувства (осязание, слух, речь, зрение), ASIMO – гуманоид японской фирмы Honda, робот-собака AIBO, созданная компанией Sony и другие.
- В 2005 году вышел робот-гуманоид RoboThespian британской компании Engineered Arts. Пройдя несколько модификаций, он стал наилучшей платформой для общения и развлечений. В этом же году мир увидел BigDog – боевой четвероногий робот, созданный Boston Dynamics.
- В 2008 году вышел гуманоидный дружелюбный робот NAO, предназначенный для работы в домах, университетах и лабораториях и предлагающий помощь в научных исследованиях и образовании.
- В 2011 году на МКС был отправлен первый робот-космонавт НАСА Robonaut-2.
Препятствия
Несмотря на всю полезность технологии, роботы пока не используются повсеместно, как это зачастую нам показывают во многих фантастических фильмах. Это связано с рядом факторов. Во-первых, для этого просто не готова наша инфраструктура: дороги, улицы, здания и наши дома. Роботы воспринимают мир иначе и пока неспособны даже отличить стул от стола, чего уж говорить о постоянно меняющихся условиях нашей жизни.
Во-вторых, не готова правовая система государств: использование роботов требует соответствующих законов, чтобы они «мирно» сосуществовали с нами. В конце концов, если не сами роботы, то кто-то другой должен нести ответственность за их действия.
В-третьих, некоторые исследователи утверждают, что нам необходимо опасаться этих механических рабочих, так как с дальнейшим активным развитием искусственного интеллекта они смогут в буквальном смысле поработить нас. Эти опасения слишком сильно сдерживают исследование и распространения робототехники.
Конечно, не стоит отрицать, что есть масса глобальных рисков, которые могут возникнуть при использовании сверхчеловеческого разума, не запрограммированного на безусловную лояльность к человеку. Но будущее пока что в наших руках, и мы в силах его изменить, тем более, что сейчас программирование роботов становится все более открытым и доступным для общественности. Нужно только научиться правильно пользоваться этими возможностями.
Роботы сегодня
Как уже упоминалось, наибольшей отраслью, где используется робототехника, является промышленность, в частности, автомобилестроение. Манипуляторы, работающие на заводах, варьируются от размеров и функциональности в зависимости от типа выполняющей задачи – сборочные, сварочные, режущие, красящие. Наряду с ними на производстве можно встретить разгрузочно-погрузочных роботов, упаковщиков, сортировщиков, формовщиков и прочие механизмы, заменяющие человека в рутинных повторяющихся задачах. Компаниями-лидерами в промышленной автоматизации являются – KUKA (Германия), Fanuc (Япония), Kawasaki (Япония), ABB (Швейцария), Denso (Япония) и другие.
Наряду с этим новых масштабов приобретает рынок совместных роботов, которые могут работать с людьми на одной производственной линии, не причиняя им вреда. Это манипуляторы компании Universal Robots, а также промышленные роботы нового поколения Baxter и Sawyer от Rethink Robotics.
В последние годы весь мир внимательно следит за разработкой автомобилей с автономным управлением, которые будут перевозить людей без их участия в процессе. Сейчас ближе всего к беспилотным машинам находится служба такси Uber. Но прогресс в разработке технологии регулярно демонстрируют такие производители, как Ford, Mercedes, Toyota, BMW и Tesla.
Роботы также активно используются в сельском хозяйстве. Зачастую, это радиоуправляемые тракторы и плуги, но все более широкого применения приобретают беспилотные летательные аппараты, которые аграрии используют для картографирования своих угодий и регулярного осмотра культур.
А какие роботы служат в быту? Безусловно, первое место здесь принадлежит роботам-пылесосам, которые стали незаменимыми помощниками по уборке в доме. Лидером среди производителей этих устройств является американская фирма iRobot и её пылесосы Roomba. Последние модели производителя отличаются улучшенной навигацией и сопряжением со смартфоном. Данное дополнение открывает новые возможности для обычных пользователей, которые могут через специальные приложения добавлять роботам больше функций.
Для ухода за газонами служат автоматизированные газонокосилки, которые оснащены массивом датчиков для безопасной езды и стрижки травы на больших площадях. За бассейнами ухаживают небольшие колесные роботы, которые самостоятельно передвигаются по дну водоема, чистят стены, ступени и фильтруют воду.
Кроме того, растущего числа набирают беспилотные летательные аппараты, которые давно перешли от исключительно военного применения к гражданскому. Дроны используются для самых различных задач – от развлечения до наблюдения и профессиональной видеосъемки. Лидерство в этом секторе за китайским производителем DJI. Их последний аппарат Spark считается самым совершенным селфи-дроном, запускаемым и управляемым жестами.
Все большего распространения также приобретают системы умного дома. Если раньше такая «автоматизация» заключалась в хлопанье ладошами чтобы включить свет, то сейчас человеку вообще не нужно ни за чем следить – вся власть в руках электронного управдома, роботизированного центра управления, которому подчинены все домашние устройства от систем безопасности и освещения до кофеварки и стиральной машины.
Более того, пользователь может сам добавлять функции в систему, которые ему нужны. К примеру, ему необходимо настроить работу стиральной машины на время, когда счетчики работают в режиме «ночь», чтобы экономить расходы на электроэнергию. Для этого нужно сконструировать соответствующее приложение для смартфона, который поможет оставаться на связи с домом и управлять домашней автоматизацией практически с любого места.
Как видите, роботы уже вошли в нашу жизнь в виде разнообразных умных гаджетов, бытовых приборов и смарт-систем. Однако до идеального образа, созданного человеческим воображением, умным машинам еще очень далеко. Все что они могут – выполнять запрограммированные человеком команды. Но инженеры упорно стремятся к тому, чтобы сделать машины по-настоящему дееспособными, а взаимодействие с ними более легким, естественным и главное – доступным обычному человеку.
Прогнозы на будущее
С каждым годом эксперты и аналитики представляют нам новый мир, где на смену вере в сверхъестественное придет вера в науку и технику. Мир, в котором можно учиться и работать, не выходя из дома. Интернет размоет границы между странами, а роботы будут делать за нас практически все.
Если верить статистическим данным организации Tractica, число потребляемых человечеством роботов достигнет 31,2 млн единиц по всему миру к 2020 году. При этом, лидерство на рынке займут бытовые роботы, обогнав промышленных и военных.
Ученые прогнозируют, что уже к 2018 году Интернет вещей будет насчитывать около 6 млрд подключенных устройств. Эти устройства будут обращаться к сервисам и данным в Сети, что позволит людям строить новые бизнес-планы для обслуживания этих подключенных устройств. К 2020 году 40% взаимодействий с мобильными устройствами будут осуществляться через «умных» агентов. Этот прогноз основан на том, что наш мир движется к эпохе приложений, в которой такие сервисы, как Amazon Alexa, Microsoft Cortana и Apple Siri будут играть роль универсального интерфейса для взаимодействия человека с устройствами.
Технический директор Google Рэй Курцвейл в своих прогнозах по поводу развития робототехники и информационных технологий предполагает, что персональные роботы, способные на полностью автономные сложные действия, станут такой же привычной вещью, как холодильники или стиральные машины уже в 2027 году. А беспилотные автомобили заполнят полностью дороги в 2033 году.
Какими бы утешительными или наоборот пугающими не были прогнозы, перед учеными и инженерами стоит еще ряд проблем. Основная из них – жесткие ограничения правительств государств в принятии робототехники, которые сопровождаются нехваткой стандартов качества и безопасности продукции.
Еще одна проблема, которую нужно решить перед тем, как роботы будут массово внедрены в жизнь – это доступность программного и аппаратного обеспечения. Дороговизна материалов и оборудования для производства не позволяет производителям снижать цены на своих роботов. К примеру, очень дорого стоят такие медицинские устройства как экзоскелеты, которые помогли бы многим людям с ограниченными возможностями нормально жить и передвигаться.
Пока нам доступны только роботы-уборщики, дроны и персональные помощники, но радует тот факт, что вскоре у нас будет возможность делать эти устройства более функциональными, не завися от производителей.
Плюс ко всему, обычные люди пока не готовы морально к принятию роботов, похожих на них. Это связано в первую очередь с нехваткой информации о том, каких достижений добился научно-технический прогресс. Вдобавок к этому у людей сложилось ошибочное мнение о роботах, которые были неоднократно представлены в научно-фантастических фильмах. Некоторые до сих пор воспринимают слово «робот» как что-то вроде «Терминатора» или дроида из «Звездных войн». А ведь на самом деле, сейчас собрать и запрограммировать робота может даже ребенок.
Нужно расширять границы знаний, больше читать и смотреть интересные видео об устройствах из реального мира, которые могут иметь большое значение в нашей повседневной жизни.
Роботы в концепции IoT
Робототехника также затрагивает область столь нашумевшего сейчас направления – Интернета вещей. Это единая сеть, которая соединяет окружающие объекты реального мира с виртуальными.
Как это происходит: сенсоры вводятся во все подключенные к сети устройства, что позволяет им взаимодействовать с внешним миром. К примеру, «умные» шторы, которые сами регулируют свою прозрачность в зависимости от уровней внешнего и внутреннего освещения. Или холодильник, который самостоятельно регулирует температуру в разных отсеках, основываясь на том, какие продукты вы берете чаще всего. Таким образом, техника начинает подстраиваться под ежедневную жизнь пользователя и управляться исходя из его потребностей.
Интернет вещей – это не просто объединение различных приборов и датчиков через проводные и беспроводные каналы. Это более тесная интеграция реального и виртуального миров, в которых производится общение между людьми и устройствами.
Ученые уверены, что в будущем эти системы станут активными участниками информационных и социальных процессов, а также бизнеса, где они смогут взаимодействовать между собой, обмениваться информацией об окружающей обстановке, реагировать и влиять на внешние процессы без вмешательства человека.
На этом фоне появляется концепция Social IoT, которая предполагает объединение людей, роботов и устройств в одно информационно-правовое поле. Но что же нужно для осуществления этой концепции? Дело в том, что самой главной проблемой в данной области на сегодняшний день является отсутствие государственных стандартов, что затрудняет возможность применения предлагаемых на рынке решений, а также сдерживает появление новых.
Но кроме стандартов безопасности, необходимо создать доступные механизмы взаимодействия между роботами и людьми для управления и контроля. Это даст возможность полноценно управлять не одним роботом, а безопасно впустить в наше общество иную цивилизацию машин и жить в гармонии с ними.
Такие пользовательские программные сервисы, к счастью, скоро появятся и будут доступными, позволяя даже новичку добавлять к своему роботу новые интересные задачи. Хотите, чтобы робот-пылесос пел ваши любимые песни? Почему бы и нет. Для этого достаточно будет воспользоваться набором готовых базовых инструментов.
С помощью API программы каждый желающий сможет быстро создавать и комбинировать множество своих вариантов решений. При этом не нужно будет тратить свои ресурсы на создание базовых инструментов, а только фокусироваться на основной задаче.
Уже в ближайшем будущем вы сможете подключить программу, выбрать готовое приложение и сделать свой робот-пылесос говорящим и поющим. А если оснастить его видеокамерой, он сможет выступать в роли охранника. Но самое главное, что с помощью большого набора программных инструментов у вас появится возможность писать собственные уникальные приложения, чтобы добавлять бытовым роботам больше новых функций.
Стоит также отметить, что каждый отдельно взятый продукт стороннего разработчика на представленной базе будет иметь возможность привлекать к себе пользователей всей системы и распространять свой продукт. Таким образом, будет создана большая экосистема инструментов и возможностей, которые будут пользоваться ежедневно людьми со всего мира.
Заключение
В заключение стоит отметить, что по мере того как наш мир будет наполняться роботами, навыки общения с ними будут не менее полезны чем навыки общения с людьми. Мы видим, как современные технологии постепенно объединяют людей и умные машины в одну большую социально-аппаратную сеть. И это только начало сложного, но очень увлекательного путешествия в будущее.
Читайте также: